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I. Research in Reliable I/O Design 



1     Overview 
In modern computing systems, I/O is a limiting factor in both performance and reliability. 
In this research investigation, we concentrated on evluating disk organizations that have 
been proposed in the literature to solve "the I/O problem". 

The loss or unavailability of data may have substantial impact on various applications 
(finance, ground control, etc.). This often justifies using coding techniques to substantially 
lower the risk. For modest data spaces, the simple duplication of disks and controllers (disk 
duplexing) is an inexpensive and often effective solution. For systems requiring high I/O 
bandwidth or having vast data spaces, a fleet of disks will be needed. Redundant Arrays of 
Inexpensive Disks (RAID) [4, 6, 8] were proposed to overcome the reliability problems that 
come with relying on a large number of disks. 

The classical RAID architecture consists of a set of disks attached to a custom controller 
as shown in Figure 1. The information on one of the disks is designated as parity while the 
remaining disks contain data [9]. The code implemented is the (N + l,N) parity check code. 
It is suitable for correcting one erasure. An erasure is the equivalent of a self-identifying disk 

failure. 

D D D D P 

controller 

Figure 1: RAID Level 5 architecture 

Since every data update involves writing both to the appropriate data disk and to the 
single parity disk, there may be a bottleneck at the parity disk. As a result, RAID Level 
5 specifies that the parity be rotated. Imagine that the data placement is rotated one disk 

p to the right. With N + 1 disks, this may be done repeatedly to obtain N + 1 different, but 
|| equally functional possibilities for parity. The data space is divided into N + l smaller spaces 

of roughly equal size. Each one of these subdivisions is then associated with its own parity 
fl position. This distributes the read and write load evenly across the disks. 
*s: RAID Level 5 does a passable job of surviving disk failures.  For I/O subsystems with 

more stringent reliability requirements or with many disks, RAID Level 6 is attractive. RAID 
Level 6 uses a (N + 2, N) Reed-Solomon code, which can correct any two disk failures. 

We aimed specifically at assessing RAID-like disk organizations considering that other 
elements of the I/O subsystem can also fail—for example, controllers, cables, and power 

|^ supplies. Current shipping RAID products are inherently unreliable, because their controllers 
are critical components.  Since controllers can fail, it is natural to consider what happens 

, -j when every disk attached to a controller becomes unavailable. So we view having multiple 
. | controllers with multiple disks connected to each; this looks logically like a two-dimensional 

array. If each column of the array has a controller assigned to it, then for simplicity we say 
that any failures in the I/O subsystem that do not merely affect a single disk affect a column 

£ of disks. Moreover, we will assume that the failure rates for such columns are not vanishingly 
small—so, unlike nearly all previous work, we do not ignore such failures. In referring to any 

■v failure affecting an entire column of disks, we will generally simply say 'controller failure'. 
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The classical two-dimensional arrangement to handle controller failures [10] is depicted 
in the left side of Figure 2. Each row of the array is a 'parity group' (is governed by one 
parity equation). The top row depicted, and all other rows, implements a. (N + l,N) code 
that can correct any single erasure. Each column of disks has a controller attached to it 
(two shown in the figure). Consequently, failure of a controller will affect one disk from each 
parity group—failure of two disks in the same parity group does not result from a controller 
failure. Reliability can be enhanced by providing a dual path to the disks, as is depicted in 
the left side of the figure. Two controller failures must occur in order to have the effect of 
making an entire column inaccessible. 
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Figure 2: Dual path and Crosshatch controller placements 
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We refer to these two options as 'single path' and 'dual path'. With the parity groups 
arranged horizontally, as shown, we refer to the method used as either 'single path horizontal' 
or as 'dual path horizontal' [10]. 

Another method, which is even more effective in protecting against controller failures, 
is the Crosshatch [7] placement of controllers depicted in the right side of Figure 2. In the 
Crosshatch arrangement, there are row controllers and column controllers. In order for a 
disk to become inaccessible from controller failures, both its corresponding row controller 
and its corresponding column controller must have failed. With this method, it is most 
sensible to have the parity groups comprised of diagonally related disks. This Crosshatch 
diagonal method provides complete protection against triple controller failures. I.e., if three 
controllers fail, at most two disks may become inaccessible. Moreover, those two disks must 
be in either the same column or the same row—therefore, they cannot be in the same parity 
group. 

We focus on the reliability of the proposed disk organizations. In the next section, we 
eliminate some proposed disk organizations, because they are subject to single points of 
failure. In the section following that, we describe our own proposed disk organization. 



2    Disk Organizations and Their Masked Faults 

It should be noted that the dual path horizontal and Crosshatch diagonal methods depicted 
in Figure 2 require that each disk support access by two controllers. Such dual-ported disks 
are not commodity products to the extent that single-ported disks are. Therefore, we first 
classify RAID-like disk organizations according to whether they support single-ported disks 
or require dual-ported disks. 

Table 1 shows which fault combinations are masked by various disk organizations. All 
of these disk organizations support single-ported disks. The column headings signify the 
component failures—e.g, 'DDC means two disk failures and one controller failure. A method 
is awarded a '1' if it tolerates all combinations of faults of the quantity given. (E.g., RAID 
Level 5 tolerates all single disk failures, 'D'.) A method is awarded a '< 1' if it tolerates 
nearly all such combinations of failures. (E.g., disk duplexing is not guaranteed to tolerate 
all double disk failures, 'DD', but it tolerates nearly all of them.) '0' indicates the method 
does poorly with the fault combination. A dash signifies that the method already fails to 
tolerate a lesser fault combination. (E.g., no indication is given for disk duplexing and triple 
disk failures, because disk duplexing does not mask all double disk failure combinations.) 

Method D C DD DC cc DDD DDC DCC ^ccc 
Disk duplexing 1 1 <1 0 0 - - - - 

RAID Level 5 [6] 1 0 0 - - - - - - 

RAID Level 6 [6] 1 0 1 - - 0 - - - 

EVENODD [i; 1 0 1 - - 0 - - - 

Single path horizontal  10] 1 1 0 0 0 - - - - 

Single path ORAID GF(4) 1 1 1 0 0 <1 - - - 

Modified EVENODD 1 1 1 1 1 < 1 0 0 0 

Table 1: Fault coverage using single-ported disks 

m 
Since RAID Level 5, RAID Level 6, and EVENODD do not tolerate all single points of 

failure, we will not discuss them further. 
The disk organization given as modified EVENODD results from looking at the work 

in [1] from the perspective of unreliable controllers. That work, in discussing disk failures, 
represents each disk as a column—each element of the column being some portion of the 
disk. The code given in [1] does not have a high rate, so it is able to mask double column 
erasures. For the discussion in [1], that corresponds to double disk failures. But for our 
discussion, we can imagine that the code is implemented across multiple controllers—where 
each controller is a column and each disk is a column element. The strength of the code 
yields excellent fault masking. The penalties for this are: (1) the rate of the code is less, so 
more disks are needed, although the rate is higher than with disk duplexing and (2) writing 
to the file system requires more disk operations. 

Table 2 shows the same information for disk organizations that require dual-ported disks. 
In this case the EVENODD disk organization is as in [1] and the controller is duplicated. 

Since these disk organizations require dual-ported disks they are only plausible for ultra- 
reliable systems.  As we discovered in our reliability analysis, only the Crosshatch ORAID 
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Method D C DD DC cc DDD DDC DCC ccc 
Dual path RAID Level 5 1 0 1 0 - - - - 

Dual path RAID Level 6 1 1 1 0 0 1 - - 

Dual path EVENODD 1 1 1 0 0 1 - - 

Dual path horizontal [10] 1 0 1 1 - - 0 1 
Crosshatch diagonal [7] 1 0 1 1 - - 0 1 

Crosshatch ORAID GF(4) 1 1 1 1 < 1 1 1 1 

Table 2: Fault coverage using dual-ported disks 

disk organization can justify itself. 

3    Description of ORAID Architecture 

Figure 3 shows the basic physical architecture of ORAID. In this figure the 'single path' disk 
arrangement is shown. 
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Figure 3: ORAID architecture 
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The parity disks—PQ, Pi, and so forth-—are located along the major diagonal of the array. 
For convenience, we use the notation P,- and Da interchangeably. The controllers, C,-, are 
attached to each column. 

Let there be k controllers and k2 disks. The code used is systematic, so for each disk, 
A'j, i 7^ j, the disk simply contains the data. To read data, all that need be done is to 
determine which data disk contains the desired block. 

The contents of the parity disks are defined as follows: 

.     Pi = E^.- + «E^ 



where addition is over a Galois field GF(2P) for some positive integer p. a is a generator for 
GF(2P). In the case of GF(2), a = 1. There are several plausible choices for the Galois field: 

rn GF(2), GF(4), GF(8), GF(16), etc.  We refer to these disk organizations as, for example, 
^ ORAID over GF(8). When constrained to allow single-ported disks, ORAID cannot really 

compete with the modified EVENODD disk organization. So we will only consider ORAID 
f for systems with dual-ported disks (the Crosshatch layout). To achieve an ultrareliable I/O 

subsystem requires, at the outset that all double disk failures be tolerated. Since ORAID 
over GF(2) is vulnerable to some double disk failures, we eliminate that as well. That leaves 
GF(4) or a higher-order field. Using a field of order greater than 8 does not allow ORAID to 
mask any additional fault combinations, so the natural possibilities are ORAID over GF(4) 
and ORAID over GF(8). (If not using GF(4), it will likely be appropriate to choose a field 

vi like GF(16), so that each symbol can be represented by 4 bits instead of 3.) 
The code used is merely a parity product code with the row and column parities folded 

into each other. The diagonal elements of the product code are not used for data and the 
parity elements are positioned in their place. 

As with all disk organizations we investigated, we assumed that the parities are horizon- 
tally rotated in order to balance the load across the disks under fault-free operation.   For 

•:. •*' convenience in the ensuing discussion, we do not refer to parity rotation further. The anal- 
ysis we conducted showed that taking parity rotation into consideration does not materially 

f$ affect the results. 
&-' Applications make read and write requests of the data space. But in RAID architectures 

these requests do not map directly to disk read and write operations. We define five elemental 
J; I/O subsystem operations: 

R Read a disk block 

!"' • W Write a disk block 

M Perform a read-modify-write sequence on a disk block[6] 

g S Scale a buffer block (i.e., multiply by a Galois field element) 

A Add (XOR) two buffers (from different disk controllers) 

The scaling (S) and adding (A) operations are conducted by either the I/O processor 
or a custom disk controller; scaling in ORAID is only applicable when not using GF(2). 
In GF(2P), addition may be made equivalent to XOR. So the read-modify-write operation 
consists of reading a disk block, XOR-ing it into the contents of a buffer, and then writing 
that buffer back into the place of the original disk block. The read-modify-write operation 
entails only one disk seek, but one additional disk revolution must occur instead of a disk 
read operation (assuming that a block is confined to one disk track). A read immediately 
followed by a write to the same disk block is considered to be a read-modify-write operation 
even when no modification (XOR) occurs or when the XOR result is not the data written. 

Table 3 shows the total disk load under fault-free conditions, r and w are the rates of 
logical disk reads and writes, respectively. These logical reads and writes must be translated 
into the elemental I/O operations. Single path and dual path organizations have the same 
load. 

Like RAID Level 6, OllAID requires updating three disks whenever a block of data is 
written.  Both those schemes tolerate all double disk failures; and, as is well known, three 



Method Read Write Read-Modify-Write Scale 

Disk duplexing r 2w 0 0 
RAID Level 5 (3 disks) r + w 2w 0 0 

RAID Level 5 r 0 2w 0 
RAID Level 6 r 0 Zw w 

EVENODD r 0 3w 0 
Horizontal (single/dual) r 0 2w 0 

Modified EVENODD r 0 Aw 0 
Crosshatch diagonal r 0 2w 0 

ORAID GF(4) r 0 3w w 

Table 3: Fault-free disk load 

updates are necessary to do that.  The extra read-modify-write operation is the price that 
must be paid to tolerate all double disk failures. 

To establish the claim that ORAID needs only one scaling- operation and three read- 
modify-write disk operations for each data write request, one need only examine Figure 4. 

■m 

4    Summary of Conclusions 

We investigated RAID-like disk organizations proposed in the literature, with particular 
emphasis on their reliability when subject to controller failures. Since disk duplexing was the 
only viable disk organization for single-ported disks, we proposed two new disk organizations 
to achieve ultrareliable I/O subsystems in the presence of controller failures. The first method 
is a direct adaptation of the EVENODD disk organization propounded in [1] and achieves 
high reliability using commodity single-ported disks. The other disk organization introduced, 
Crosshatch ORAID, achieves ultra high reliability using dual-ported disks. 

Disk duplexing will be the preferred solution for most low-end file servers. It may be 
inadequate on either performance or reliability grounds. In both cases, the modified EVEN- 
ODD disk organization is attractive. RAID Level 5 and RAID Level 6 are not comparable 
for either performance or reliability. While the single path horizontal disk organization [10] 
has the potential for performance comparable to the modified EVENODD disk organization, 
its reliability is seen to be uniformly even worse than disk duplexing. 

When very high reliability is required, it may be necessary to use dual-ported disks to 
achieve this. (There is a coincidental opportunity to improve performance in doing so.) 
In considering the reliability of various dual-ported disk organizations, it is seen that only 
the Crosshatch ORAID disk organization distinguishes itself from disk duplexing in terms of 
reliability. A more interesting comparison, considering the complexities involved, is whether 
the modified EVENODD disk organization is adequate, because it would allow the use of 
single-ported disks (albeit more of them). We can conclude that the modified EVENODD 
disk organization is suitable for ultrareliable I/O subsystems (< 0.1% probability of data 
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Determine (i,j) 
Cj (bufferi) <— Data 

CJ:     buffer2 +- buffer © Dy 
— buffer two contains modification 

CJ:     D^ <- buffen 
— data now in place 

C,-(buffer2) <- aCi(buffer2) 
— C{ now knows the modification (scaled) 

Cf.     bufferi «- buffer2 © P,- 
CJ:      PJ *- bufferi 

— parity updated 

d:     buffer! *- buffer2 © Pt- 

C,-:      P <- bufferx 
— parity updated 

Figure 4: Writing to £>,j 

loss in any given year) provided all of the following are true: 1) controllers (data paths) are 
reasonably reliable, 2) disk reconstruction times (mostly disk size and speed) are reasonable, 
and 3) the number of data disks (disk size and data space size) are not gargantuan. Details 
are in the appendix. 
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-    •       A     Reconstruction with ORAID 

I i: Let us define 5*,-, where i G [0, k — 1], as the syndrome for parity equation i. Syndrome Si 
-: is equal to the linear combination of the elements of the z'-th row and the z'-th column—as 

dictated by the parity equation—except that any erasures are not included.  For example, 
t- parity equation i is 

0   =   J2Dji + *-£DiJ 

If the contents of Dhi are unreliable, then 

| Si   =   E^i + ^Dij 

,* = ££;, + *££>.; +A» 
j        j& 

=   Dhi 

^, As seen above, Si = Dhi- So we may obtain the missing contents of Dhi by computing 
'■•-'-'* syndrome Si. Similarly, if Dih contains unreliable data, with h ^ i, then 

i St  =  Y,D>i + «EDa 

=   J^Dji + aJ^Dij + aDih 

=   aDih 

'- , Again, we can obtain Avi, because D^ = a'1 Si.  So ORAID tolerates any single disk 
'.:-.- failure. 

Looking more closely at the syndrome equation, we see that each syndrome, Si, is a 
j linear combination of precisely the fault-free data from all disks of the form Dij and Dji. 
® This leads immediately to the conclusion that a column failure is always tolerated.   If a 

single column—say DQJ, DIJ, ..., D^-i)j—becomes inaccessible, the data may always be 
f| recovered. Specifically, for all i ^ j, D^ can be obtained from syndrome 5,-. After the data 

on all the other disks in the failed column is known, then Djj (Pj) can be trivially recovered 
as well. 

This observation about Si also gives an immediate understanding of which double disk 
failures might not be correctable.  If D^ is one of the failed disks, then necessarily i ^ j. 

:£ Otherwise, the other failed disk would have a unique subscript, its data could be recon- 
[; structed, and we would then be left with the case of a single disk failure. So let i ^ j. Also, 

the second failed disk must have its subscripts drawn from the set {i,j}- Likewise, it must 
j use both indices, i and j, for the same reason.  So reconstruction is assured unless the two 

(üj failed disks are Dij and Dji, for some i and j. These disks are located as reflections of each 
other across the diagonal of parity disks. 

In that event, the syndromes we have are 

St   =   Dji + aDij 

Sj   =   Dij + aDji 

10 



From this we can derive 

Da   =   (J + iy^Sj + aSi) 

So we can effect reconstruction provided a2 + 1 has an inverse. In GF(4), GF(8), and so 
forth, a2 + 1 ^ 0, so the data can be reconstructed. So the GF(4) and GF(8) ORAID disk 
organizations tolerate all double disk failures. 

In GF(2), however, a2 + 1 = 0—the two syndrome equations are linearly dependent. So, 
in ORAID over GF(2), when two disks fail that are reflections of each other, data is lost. 

The time required to reconstruct data after a failure affects reliability because it dictates 
the length of time that the system is exposed to additional failures. We obtain reconstruction 
times based upon the data bandwidths in the system. We use disk duplexing as a basis. 
Figure 5 shows the information flow required to reconstruct a failed disk. The failed disk is 
the top left one in the disk array. The figure shows the flow for two disk organization: disk 
duplexing and single path horizontal. 
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Figure 5: Load during reconstruction of single disk 

The flow of information is assumed to be fully buffered. So in the left side of the figure 
we see that the left controller (attached to the failed disk) experiences a load of '2'. Its 
operations—obtaining the data from the master controller and forwarding the data to the 
'failed' disk—are each counted. Buffering at each disk is ignored (this will not change between 
disk organizations). 

The right side of the figure depicts the information flow required to reconstruct the data 
onto the top left disk of the disk array for the single path horizontal method. Here the master 
controller (or central processor) endures a notably increased load. For our purposes, we will 
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assume that disk duplexing is a balanced design. By balanced, we mean that the ratio of the 
bandwidth demanded by reconstruction to the bandwidth available at the components is the 
same for each component type. So we estimate the reconstruction time after a disk failure, 
for the single path horizontal disk organization, to be max(fc/2,2/2,1/1) = k/2 times the 
reconstruction time for disk duplexing. In other words, with the single path horizontal disk 
organization, one can issue I/O requests for disk reconstruction at 2/k of the rate of disk 
duplexing—this induces an equivalent load at the master controller. 

In practice various other considerations will come into effect. Chief among these is that 
the (non-reconstruction) I/O load has a pointed effect. But when comparing dramatically 
different disk organizations, such as disk duplexing and single path horizontal, there is a wide 
range of I/O load over which one (single path horizontal) is operational and the other (disk 
duplexing) is saturated. Using more controllers (and, to a lesser extent, using more disks) 
has a large impact on the I/O load that can be supported. So we regard the performance 
requirement of the system orthogonally. The performance requirement may veto using some 
disk organizations. Also, it is understood that the disk organizations using more controllers 
will perform better under high I/O loads. 

B    Reliability Analysis 

We now ascertain the reliability of various disk organizations. We use the customary combi- 
natorial approximations [3, 6, 7], except that we have made some modifications to increase 
accuracy. Xd and Ac are the rates of failure of disks and controllers, respectively, fid and 
fic are the rates of repair of disks and controllers, respectively. fj.c does not reflect the time 
needed to reconstruct out of date disks after a controller failure, because the time needed will 
vary with the fault circumstances. N is the number of disks in the data space. jV = k[k — 1) 
for the two-dimensional disk organizations. 

The expressions given are for the rates at which data unavailability occurs.  The mean 
time to data unavailability for the I/O subsystem is equal to the reciprocal of the rate of 
data unavailability. First we have the disk organizations supporting single-ported disks. 
Disk duplexing 

2NXd(Xd + Xc)/fid 

+ 2AC(AC + N\d)/nc 

+   2Xc(Xe + Xd{N + l)/2)/(fid/N) 

Here, (N + l)/2 arises, after a controller failure, from immunizing against each of JV disks 
in turn. 
Single path horizontal 

k2Xd(k-l)(Xc + Xd)/((2/k)fid) 

+ kXc(k-l)(Xc + kXd)/fxc 

+   kXc{k - 1)(AC + Xd(k + l)/2)/{(2/k)(fid/k)) 

Here, the 2/k factors are due to the rate at which disks can be reconstructed. The bottleneck 
that causes this is discussed in the previous section. 
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j*j .   .. Modified EVENODD 

p> fc(fc + l)XdkXd(l/(fid(2/k)))(k - 1)(AC + Xd/(2fid(l/k)) 

!v                             + fc(fc + l)Adfc(*r - l)Xd(l/fxd(2/k))(k - l)Xc/(2fid{2/k)) 

+ k{k + l)Xdk\c{lfßd(2/k)){k - l)(Ae + kXd/(N(l/k)) 

J                           + (fc + l)Acfc2A«»(l/^c)(fc - 1)(AC + kXd)/(fid(l/k)) 

+ (k + l)XckXc{l/fic)(k - 1)(AC + ÄrArf)/A*c 

. + (* + l)AcfcAc(l//ic)(fc - 1)(AC + kXd)/{(fid/k){l/k)) 

■~                           + (k + l)XcPXd(l/(fMd/k)(2/k))(k - 1)(AC + kXd)/(fid(l/k)) 

£                           +   (k + l)Xc(k - l)Xc(l/^d/k)(2/k))(k - 1)(AC + kXd)/((tid/(k/2))(2/k)) 

Again, the 2/k factors are due to reconstruction time.   In the second term, in the factor 
.-- (2/j,d(2/k)), the first '2' is due to disk reconstruction not being memoryless. So, after a disk 
S-: failure, we first have a chance to reconstruct the disk—(l/(id(2/k))—then after another disk 

failure we have a second chance to reconstruct the disk (and we assume that on average we 
''/;,, were half way through the reconstruction). 
!«;:'' The following are the dual-ported disk organizations. 

P 
Dual path RAID level 5 

(N + l)XdNXd/(fid/((N + l)/4:)) 

+ 2X2Jfic 

'■■-■'■ In the first term, for the reconstruction rate [id/{(N + l)/4), we have '4' instead of '2', 
because we have dual controllers. We assume that we have RAID controllers, each controller 

I .: accomplishes approximately half the reconstruction work, and (since the XOR operations 
are done at the RAID controllers) the master controller does not experience any of the 

,.» reconstruction load. 
M Dual path RAID level 6 

(N + 2)Xd(N + l)Ad(l/(/W((iV + l)/4)))iVAd(l/(2^/((iV + l)/4))) 

1 + 2A2/^C 

Again, we have '4' instead of '2' in (N + l)/4, for the same reason as with dual path RAID 
level 5. Also, as we saw with the modified EVENODD disk organization, when we have a disk 
failure followed by another failure, we are assumed to be half way through the reconstruction 

£v; of that disk. 
^3 The remaining dual-ported disk organizations follow. 

Dual path horizontal 

k2Xd(k-l)Xd/(fid(2/k)) 

+   k2Xd2{k - l)Xc(l/{(id(2/k)))(Xc + (k- l)\d)/{ixe + 2fid{2/k)) 

+ 2kX2
c(l/fic)k{k-l)Xd/fic 

+ 2kX*c(l/[ic)(k - l)((k + l)/2)A,/((w/*)(2/*)) 

+ 2kXck(k - l)Ad(l//ic)(Ac + (k- l)\d)/{iic + fid{2/k)) 

13 



V:     . Crosshatch diagonal 

M k2Xd(k - l)Xd/(fid(2/k)) 

'"'                                         + PXd(k-l)Xc(l/(fid(2/k)))(2Xc + kXd)/(ßc + 2i,d(2/k)) 

+ 2kXckXc(l/fxc)(k-l)Xd/fic 

K                                         + 2kXckXc{l/l^c)(k - l)Xd/{fid{2/k)) 

+ 2kXck(k - l)Xd{l/(xc)(Xc + (k- l)Xd)/(fic + f*d{2/k)) 

■: Crosshatch ORAID over GF(8) 

.*■ k(k-l)\l{l/A)(2k-l)(9k-6)/2 

& + 72k2X2
cX

2
d(l/fic)(l/fic + (2k - l)/2(xd)(l/(k - IK + (2k - l)l2y.d) 

+ Z2kXz
cXd(2k - 1)(1//XC)(1/A*C + {2k - l)/2//d)

2 

£ + 4a*(2fc-l)(l//zc)(l//zc + l/2^)(l//ic + (2Ä:-l)/^) 

For the Crosshatch ORAID over GF(8) disk organization, we have used GF(8) for simplicity 
M and have broken down the failure rate into a single term for each component combination 

(triple disk, double disk and double controller, etc.). Except for the first term, these terms ' 
ET? may be notably pessimistic, depending on the parameters. 

C    Reliability Comparison 

The following plots show the mean time to data unavailability (mean time to failure, MTTF) 
; ' for various disk organizations.   The MTTF is calculated from the equations given in the 

previous section. The default parameter values for component failures are Ac = A^ = 1 per 
50,000 hours. Also, the standard reconstruction rate for disk duplexing is (id = 1 per hour. 

f| The standard controller (data path) repair rate is /ic = 1 per 4 hours; this does not include 
II the time to reconstruct disks that have become out of date.   The default number of data 

disks is N = 20 (it = 5). 
Single-ported disks 

Figure 6 shows the system MTTF for single-ported disk organizations as a function of 
the controller reliability. The single path horizontal disk organization is not a factor. The 
modified EVENODD disk organization is prevalent, except when controller reliability is quite 
low. With low controller reliability, the added complications of EVENODD might not be 
justifiable—unless the additional controller bandwidth is desired for performance reasons 
anyway. 

Figure 7 shows the system MTTF for single-ported disk organizations as a function of 
the disk reconstruction time (for disk duplexing). The disk reconstruction time depends 
upon (among other factors) the speed and size of the disks. Faster, smaller disks favor the 
modified EVENODD disk organization. 

Figure 8 shows the system MTTF for single-ported disk organizations as a function of 
the number of disks in the data space. Disk duplexing scales the best to large numbers of 
disks. So, for systems requiring a large number of disks and not needing the performance 
of the modified EVENODD disk organization, the simplicity of disk duplexing stands out. 

m 
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This does, however, require that disk duplexing's two controllers support many disks (cf. for 
modified EVENODD, the high end of the plot is with 14 disks per controller). 
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Figure 8: Longevity scalability (single-ported disks) 

Greater performance can be gained using disk duplexing by increasing the number of 
controllers (e.g., by having 6 controllers implement 3 replicates of disk duplexing, each with 
a iV/3-disk data space).   This has the effect, though, of increasing system failures due to 
multiple controller failures. We did not investigate this. 
Dual-ported disks 

Figure 9 shows the system MTTF for dual-ported disk organizations as a function of 
the controller reliability. A surprise is that the Crosshatch diagonal disk organization [7] is 
not distinguishing itself from the dual path horizontal disk organization [10]. We see the 
beginnings of a separation when controllers are very unreliable, which is the domain assumed 
in [7]. 

We also note that dual path RAID Level 6 does not stand out until controllers (data 
paths) are reasonably reliable. The asymptotic (in controller MTTF) reliability of dual path 
RAID Level 6 is notably below that of Crosshatch ORAID over GF(8), because ORAID tol- 
erates nearly all triple disk failures. The knee for ORAID also arrives at a (lower) reasonable 
controller reliability. 

Figure 10 shows the system MTTF for dual-ported disk organizations as a function of the 
disk reconstruction time (for disk duplexing). This plot has no surprises; it merely confirms 
the superiority of Crosshatch ORAID, regardless of disk size and speed. 

Figure 11 shows the system MTTF for dual-ported disk organizations as a function of 
the number of disks in the data space.  Again, this plot brings no surprises.  It does make 
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clear, however, that dual path RAID Level 6 does not scale well. For the same data space 
size, using fewer (larger) disks is encouraged. 
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Fault Injection 
A METHOD FOR VALIDATING 

COMPUTER-SYSTEM DEPENDABILITY 
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Fault injection is an effective 

solution to the problem of 

validating highly reliable 

computer systems. Tools such 

as React are facilitating its 

application. 

With greater reliance on computers in a variety of applications, 
the consequences of failure and downtime have become 
more severe. In critical applications, such as aircraft flight 

control, nuclear reactor monitoring, medical life support, business trans- 
action processing, and telecommunications switching, computing 
resource failures can cost lives and/or money. 

Computers employed in such applications often incorporate redun- 
dancy to tolerate faults that would otherwise cause system failure. A fault- 
tolerant computer system's dependability must be validated to ensure that 
its redundancy has been correctly implemented and the system will pro- 
vide the desired level of reliable service. Fault injection—the deliberate 
insertion of faults into an operational system to determine its response— 
offers an effective solution to this problem. In this article, we survey sev- 
eral fault-injection studies and discuss tools such as React (Reliable 
Architecture Characterization Tool) that facilitate its application. 

COMPUTER-SYSTEM DEPENDABILITY 
Dependability is a qualitative system attribute that is quantified through 

specific measures. The two primary measures of dependability are relia- 
bility and availability. Reliability is the probability of surviving (without 
failure) over an interval of time. Availability is the probability of being oper- 
ational (not failed) at a given instant in time. The mean time to failure 
(MTTF) and the mean time between failures (MTBF) are also frequently 
used. Dependability is often evaluated empirically through life testing. 
However, the time needed to obtain a statistically significant number of 
failures makes life testing impractical for most fault-tolerant computers. 
Instead, analytical modeling is typically used to predict dependability. 

Analytical dependability models enumerate a system's operational or 
failed states. Each state represents a unique combination of faults and 
their effects on system components. The times at which the faults occur 
are assumed to fit a particular statistical distribution. Several standard- 
ized procedures estimate the failure rates of electronic components when 
the underlying distribution is exponential. However, fault handling 
beyond this stage has been modeled in many different ways. 

Most fault-handling models use coverage parameters to specify the 
probability of successfully performing the actions needed to recover from 
a fault. These actions include detecting the fault, identifying the affected 
component, and isolating that component through system reconfigura- 
tion. Each action must be taken quickly, before any additional faults that 
can overload the system's fault-handling mechanisms accumulate. For 
this reason, many models incorporate distributions of latency—the time 
needed to perform each of these actions. Because even small variations in 
coverage and latency can greatly affect dependability, these parameters 
should be estimated based on data from the actual system rather than 
approximated (see "Background" sidebar). 

Fault-injection studies can provide this data through many individual 
experiments that vary how, where, and when the faults are intentionally 

* The views, opinions, and/orfindings in this article are those of the authors, and should 
not be construed as the official positions, policies, and/or decisions of the Mitre Corporation 
or its government sponsors. 
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inserted. Large complex systems and time constraints make 
exhaustive insertion impractical; therefore, only a care- 
fully chosen subset of all possible faults can usually be 
investigated. Insertion must be controlled so that the type, 
location, time, and duration of each fault, or the corre- 
sponding statistical distributions, are at least approxi- 
mately known. Faults can be inserted into both the 
hardware and software components of a realized system 
or a simulation model that accurately reflects these com- 
ponents' behavior. During each experiment, the system 
must be operated with a representative work load to obtain 
a realistic response. The effects of each inserted fault are 
precisely monitored and recorded with instrumentation. 

Besides supplying coverage and latency parameters for 
analytical models, fault injection can directly evaluate 
dependability metrics. It is particularly useful for mea- 
suring those system attributes that are difficult to model 
analytically—for example, the work load's influence on 
dependability. Fault injection aids design when it is used 
to functionally test a prototype during system develop- 

ment. It can identify implementation errors in fault- 
tolerance mechanisms and provide feedback on those 
mechanisms' efficiency. When the system is ready for 
deployment, fault injection can be used to observe the 
error or failure symptoms associated with each type of 
faulty component. Fault dictionaries can then be compiled 
to support system diagnosis during maintenance actions. 
Finally, fault-injection experiments provide a means for 
understanding how computer systems behave in the pres- 
ence of faults. Such knowledge will ultimately lead to bet- 
ter system designs and higher dependability. 

TAXONOMY OF EXPERIMENTS 
Fault-injection experiments can be classified according 

to three general attributes: system abstraction, fault model 
and injection method, and dependability measure. 

System abstractions 
Fault-injection studies have traditionally been per- 

formed on the actual hardware and software of physical 

EacEcgrcuncS 

Afault is a deviation in a hardware or software component 
from its intended function. Faults can arise during all stages in 
a computer system's evolution—specification, design, devel- 
opment, manufacturing, assembly, and installation—and 
throughout its operational life. Most faults that occur before 
full system deployment are discovered through testing and 
eliminated. Faults that are not removed can reduce a system's 
dependability when it is in the field. Despite the potential for 
such latent faults in computer systems, most fault-injection 
studies focus on the faults that occur during system operation. 

Hardware faults occurring during system operation are cat- 
egorized mainly by duration. Permanent faults are caused by 
irreversible device failures within a component due to dam- 
age, fatigue, or improper manufacturing. Once a permanent 
fault has occurred, the faulty component can be restored only 
by replacement or, if possible, repair. Transient faults, on the 
other hand, are triggered by environmental disturbances such 
as voltage fluctuations, electromagnetic interference, or radia- 
tion. These events typically have a short duration, returning the 
affected circuitry to a normal operating state without causing 
any lasting damage (although the system state may continue to 
be erroneous). Transients can be up to 100 times more frequent 
than permanents, depending on the system's particular oper- 
ating environment. Intermittent faults, which tend to oscillate 
between periods of erroneous activity and dormancy, may also 
surface during system operation. They are often attributed to 
design errors that result in marginal or unstable hardware. 

Software faults are caused by the incorrect specification, 
design, or coding of a program. Although software does not 
physically "break" after being installed in a computer system, 
latent faults or bugs in the code can surface during operation— 
especially under heavy or unusual work loads—and eventually 
lead to system failures. For this reason, software fault injec- 
tion is employed primarily for testing programs or software- 
implemented fault-tolerance mechanisms. However, it has not 
seen widespread use in either application. 

When a fault causes an incorrect change in machine state, an 

Computer 

Fault Error 

Fault 
latency 

Detection 
of error 

—►*- 
Error 

latency 
Latency of 

fault-tolerance 
mechanisms 

Recovery 
or failure 
-+-•  

s-a-0         Write    Read s-a-0 Proper 
fault        value 1       value service 

occurs in     into bit     instead continues 
bit with    with s-a-0    of the or is 
value 0        fault       correct disrupted 

value 1 
s-a-0 Stuck at 0 

Figure A. Example of a fault an error, and a failure. 

error occurs. The time between fault occurrence and the first 
appearance of an error is called the fault latency. Although a fault 
remains localized in the affected code or circuitry, multiple errors 
can originate from one fault site and propagate throughout the 
system. If the necessary mechanisms are present, they will detect 
a propagating error after a period of time, called the error latency. 
When the fault-tolerance mechanisms detect an error, they may 
initiate several actions to handle the fault and contain its errors. 
Jtecovery occurs if these actions are successful; otherwise, the sys- 
tem eventually malfunctions and afailure occurs. 

Figure A provides an example to clarify the definitions of fault, 
error, and failure. Suppose a permanent stuck-at-0 (s-a-0) fault 
affects a memory bit with an initial value of logical 0. Some time 
later, an error occurs when a logical 1 is written into this bit (If 
the faulty value had been opposite the initial value of this bit, an 
error would have manifested immediatelywith no fault latency.) 
The next read from the memory bit obtains the s-a-0 value 
instead of the correct value, 1, thereby detecting an error. Proper 
service continues if the system's fault-tolerance mechanisms can 
correct or mask this bit error. If not, service is disrupted. 
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computer systems. High levels of device integration, 
mültiple-chip hybrid circuits, and dense packaging tech- 
nologies limit accessibility to injection and instrumenta- 

-, don nodes. This makes it difficult to validate the hardware 
of physical systems. Simulation, on the other hand, has 
the advantage of relatively uninhibited access to a mod- 
eled system's internal nodes. The ability to precisely con- 
trol and monitor injected faults, coupled with low-cost 
computer automation, and the potential for earlier appli- 
cation make simulated injection an attractive alternative 
to physical injection. 

Simulated fault injection can support all system abstrac- 
tion levels—architectural, functional, logical, and electri- 
cal. Mixed-mode simulation, where the system is 
hierarchically decomposed for simulation at different 
abstraction levels, is particularly useful for fault injection. 
This technique lets faults be accurately simulated at a low 
abstraction-level, while the system responses are efficiently 
simulated at higher abstraction levels. 

Fault models and injection methods 
Simulated fault injection and most experiments involv- 

ing physical hardware and software require selection of a 
fault model. The popular stuck-at fault model is commonly 
used for permanent hardware faults. However, subsequent 
errors often are of more concern than the faults them- 
selves. This is particularly true for transient faults, whose 
unpredictable origin and relatively short life span make 
them difficult to characterize. Therefore, studies involv- 
ing transients frequently employ an inversion model, 
where a fault immediately produces an error with the 
opposite logical value. Software errors arising from hard- 
ware faults are often modeled via bytes of Os or Is written 
into a data structure or portion of memory. Experimenters 
can use various other models, from detailed device-level 
to simplified functional-level models, to represent faults 
or their manifestations. 

After choosing a fault model, the experimenter must 
determine how to inject the faults into the computer sys- 
tem. Locations frequently exploited when faults are 
injected into physical systems include IC leads, circuit 
board connectors, and the system back plane. The exper- 
imenter can generate faults at these external sites by tem- 
porarily inserting circuitry that corrupts the signals 
passing through a node without damaging any system 
components. Although signal corruption can model many 
faults that occur inside components, this method usually 
does not exercise all relevant hardware in the system. 
Therefore, experimenters cannot investigate the effects of 
some internal faults with this injection technique. 

State mutation is one method of injecting errors inside 
system components. During normal system operation, 
processing is halted and special-purpose hardware orsoft- 
ware is used to introduce errors. Scan paths, designed for 
system test and diagnosis, can be used to read the shift- 
register contents, modify selected bits, and shift the 
mutated state back into the machine. Privileged system 
calls and program debuggers can insert errors into a com- 
puter system by directly modifying its memory or register 
state. State mutation is the injection method used most 
often with simulated fault injection. Computer simulators 
are typically event driven, updating a modeled system's 

state at discrete times rather than continuously. Fault 
injections are easily made between event time boundaries. 
However, because it requires stopping and restarting the 
processor to inject a fault, this technique is not always 
effective for measuring latencies in physical systems. 

Several novel approaches exist for injecting internal 
faults in hardware. ICs are susceptible to single-event 
upsets (SEUs)—created when an ionizing particle passes 
through a transistor, generating excess charge. Computer 
systems in space applications are particularly vulnerable 
to SEUs from cosmic rays. In the laboratory, transient faults 
can be induced in a similar way through short-term expo- 
sure to heavy-ion radiation. However, these fault-injection 
experiments must be performed in a vacuum chamber with 
the lid of the target IC removed, since ions are easily atten- 
uated by air. Radiation flux is distributed uniformly over 
the chip, and error rates can be adjusted by a change in the 
distance from the ion source. Shielding can confine faults 
to a particular region of the IC, but there is no dire« con- 
trol over where and when the injections occur. 

Another means for injecting internal hardware faults is 
through power supply disturbances. Short, pulsed inter- 
ruptions in power drop the supply voltage to levels that 
can increase propagation delays and discharge nodes, 
especially those in memory. Computersystems employed 
in industrial applications are often subject to similar noise 
on the power lines. Unlike radiation, which causes SEUs, 
power supply disturbances simultaneously affect many 
nodes in the target IC, producing multiple, transient bit 
faults. Unfortunately, the location of these faults cannot 
be readily controlled. This injection technique is quite sen- 
sitive to the pulse width and amplitude of the voltage dis- 
turbances. Effects can also vary widely with different 
circuit families and fabrication technologies, making it dif- 
ficult to generalize results from such experiments. 

The last method we consider for introducing faults into 
a computer system is called trace injection. This method 
first uses custom-monitoring hardware or software to peri- 
odically sample machine state or record memory references 
on an operational system. Then the acquired trace is used 
to simulate system behavior, as errors that mimic faults in 
the instrumented components are inserted into the trace. 
The quantity of data collected can be very large, limiting 
most traces to only a brief history of machine activity. It is 
therefore essential to associate some measure of system 
load (at the time the trace was obtained) with the results, 
to distinguish extremes in fault behavior from the norm. 

Dependability measures 
The traditional objective of fault-injection experimen- 

tation has been to estimate coverage and latency parame- 
ters for analytical dependability models. However, fault 
injection can also evaluate other dependability measures, 
including reliability or availability and MTTF or MTBF. 
Several failure classification experiments have analyzed 
how injected faults affect a computer system's service. 
Fault-injection studies have also investigated error prop- 
agation from a fault site to other system components. 
Finally, researchers have often observed a correlation 
between a system's dependability and either its computa- 
tional load or characteristics of its application code. Such 
work load relationships are frequently explored via fault 
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injection. Figure 1 summarizes the system abstractions, 
injection methods, and dependability measures for clas- 
sifying fault-injection experiments. 

APPLICATIONS 
Fault injection was first employed in the 1970s to assess 

the dependability of fault-tolerant computers. For some 
time afterward, fault injection was used almost exclusively 
by industry for measuring the coverage and latency para- 
meters of highly reliable systems. Not until the mid-1980s 
did academia begin actively using fault injection to con- 
duct experimental research. Initial work concentrated on 
understanding error propagation and analyzing the effi- 
ciency of new fault-detection mechanisms. Research has 
since expanded to include characterization of depend- 
ability at the system level and its relationship to work load. 

Error propagation in a jet-engine controller 
We first examine a study that explored error prop- 

agation in an HS 1602 jet-engine controller with dual- 
channel redundancy. Choi and Iyer used the Focus simu- 
lation environment to inject transient faults into one of 

Table 1. Transient fault severity. 

Type Percentage 

First-order latch errors 22.4 
Second- and higher-order latch errors 5.7 
First-order pin errors 2.1 
Second and higher-order pin errors 4.3 
Functional errors 9.2 

mi 

Si 

Table 2. Bus affected in the first erroneous cycle. 

Bus affected 

Heavy-ion 
radiation 
(percent) 

Power supply 
disturbances 
(percent) 

Address 
Data 
Control 
Combination 

64 
5 

27 
4 

17 
1 

80 
2 

!'■:•'. 

System abstractions 

Physical Logical 
Architectural Electrical 
Functional Mixed-mode 

Injection methods Dependability measures 
Signal corruption Reliability/availability 
State mutation MTTF/MTBF 
Radiation Failure classification 
Power supply Coverage and latency 
disturbances Error propagation 

Trace injection Work load relationships 

the two microprocessors in this controller.1 They used 
mixed-mode simulation at the electrical and logical lev- 
els to deposit 0.5 to 9 pico-coulombs of excess charge onto 
different nodes of the microprocessor as it executed a 
phase of its application code. The excess charge models 
transients from the penetration of various heavy ions typ- 
ically found in cosmic environments. The data in Table 1 
is from a comparison of 2,100 simulated fault-injection 
experiments with a trace of the fault-free simulation. First- 
order errors are those manifested in the first clock cycle 
after fault injection. Errors manifested in the second and 
subsequent clock cycles are called second- and higher- 
order errors, respectively. Results indicate that nearly 80 
percent of the injected transients had no impact, since 
errors had to be latched (stored in a memory element) to 
affect the microprocessor's state. Once latched, however, 
an error had more than a 50 percent chance of reaching a 
pin and more than a 40 percent chance of causing a func- 
tional error on the microprocessor's control outputs. By 
analyzing the individual contributions to these statistics 
by each of the HS 1602's six functional units, Choi and Iyer 
discovered the most effective locations for incorporating 
additional fault-tolerant features. 

Radiation and power supply disturbances 
Karlsson et al. used radiation and power supply distur- 

bances to investigate the propagation of internal errors to 
the bus of an MC6809E.2They injected transient faults into 
this microprocessor by exposing it to heavy ions from a 
Californium source and to - 4.2 V, 50-ns pulses on the 
microprocessor's 5V power supply. A reference MC6809E 
ran the same two test programs in lock-step synchroniza- 
tion with the microprocessor under test. Comparison of bus 
signals from the two microprocessors detected errors. 
Detection triggered a logic analyzer to record micro- 
processor activity for 200 bus cycles. Table 2 lists the bus 
affected in the first erroneous cycle based on 1,000 obser- 
vations. Errors appeared mainly on the address bus in the 
radiation experiments, whereas errors on the control bus 
dominated the power-supply disturbances. Although the 
initial fault manifestations were quite different, the micro- 
processor's behavior over an extended period of time was 
almost identical for both injection techniques. As Table 3 
shows, control-flow errors causing permanent divergence 
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Figure 1. Summary of the experimental taxonomy. Figure 2. User CPU usage by time of day. 
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from the correct instruction stream were responsible for 
over 70 percent of the failures observed with heavy-ion 
radiation and power-supply disturbances. Karlsson et al. 
have evaluated the coverage and latency of several different 
concurrent error-detection schemes using these methods. 

Trace injection to measure latency 
Chillarege and Iyer were among the first to measure 

fault and error latency in memory via trace injection.3 They 
ran a scanning process on a VAX 11/780 to periodically 
copy the contents of real memory locations into archival 
storage. The locations were randomly chosen from 4 to 10 
regions in memory of up to SO Kbytes each. These regions 
were repetitively scanned every 15 to 20 seconds under a 
medium to high system work load. Stuck-at bit faults were 
then simulated in the sampled words to calculate latency 
distribution parameters (given in Table 4) for a represen- 
tative set of 960 faults. The mean fault latency was almost 
five times greater for s-a-0 (stuck-at-0) than fors-a-1 faults. 
Conversely, the mean error latency of the s-a-1 faults was 
more than double that of the s-a-0 faults. Chillarege and 
Iyer attributed the difference in latencies to unequal life- 
times of 0s and Is in the system due to the way memory is 
allocated and released. They conjectured that many pro- 
grams use only a fraction of their allocated memory 
blocks. This would leave many 0s in memory, because 
blocks are initially cleared when they are allocated. 
Optimal memory scrubbing rates—the frequency at which 
single, transient bit errors are systematically corrected 
before any additional errors accumulate—are determined 
from such measurements of fault and error latency. 

System work load and memory error latency 
Chillarege and Iyer also used trace injection to analyze 

the relationship between system work load and memory 
error latency.4 They collected data by probing the back 
plane of a VAX 11/780 and sampling physical memory 
activity at 40-second intervals. They also logged work load 
profiles during this data acquisition. Figure 2 graphs one 
measure of system work load, user CPU utilization (per- 
centage of processing capacity in use), over a 24-hour 
period beginning at midnight. Work load was relatively 
low until shortly after 7 a.m. (except for a brief period 
around 1 a.m., when system routines were run), then rose 

significantly between 8 and 10 a.m., and peaked in the 
mid- to late-afternoon. Chillarege and Iyer used the mem- 
ory activity data to simulate inverted bit errors occurring 
at different times of day. Error latency distributions for 
faults inserted at midnight and noon appear in Figures 3 
and 4, respectively. Mean error latency varied from as long 
as eight hours at low work load to as short as 44 minutes 

Table 3. Classification of processor errors. 

Error class 

Heavy-ion 
radiation 
(percent) 

Power supply 
disturbances 
(percent) 

Control-flow errors 

Permanent divergence 72 

Temporary divergence 3 

Not active within 200 cycles 2 

Data errors 

Data only 5 

Address/control also affected 15 

Other errors 

Could cause failure 4 

Could not cause failure 0 

74 

4 

0 

2 
16 

2 

3 

Table 4. Memory latency distribution parameters. All latencies 
are in minutes. 

Stuck at 0 

Latency    Mean 
Standard 
deviation 

Stuck at 1 
Standard 

Mean deviation 

Fault 

Error 

Total 

70.4 

20.6 

91.1 

80.2 

31.2 

76.9 

14.6 

45.4 
60.4 

31.9 

47.9 

47.6 

Figure 3. Error latency distribution for a "fault at 
midnight. 

Figure 4. Error latency distribution for a fault at 
noon. 
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Table 5. Completion category distributions. 

Completion 
category 

Matrix 
multiplication 

(percent) 

Recursive Fibonacci 
computation 

(percent) 

Overwritten 

Fatal errors 

Time-outs 

Results wrong 

Results OK 

64 

17 

7 

8 

4 

71 

8 

7 

8 

6 

m 

-Time-out 

Fatal 
 ^_^Abnormal ("error 

f f f       completion^ 
Minor     Monitoring     Severe 
error error error ReS(j|ts 

. K> V ^   Normal    ("wrong 
[ completion"[Results 

-► Overwritten OK 

Figure 5. Fault manifestation and error propagation. 

at high work load. Notice that a fault occurring at mid- 
night was likely to remain dormant until the sharp increase 
in work load beginning at 8 a.m., whereas a fault at noon 
had a high probability of being detected quickly. This 
clearly demonstrated that error latency strongly depends 
on the work load following the fault's occurrence. 

Impacts of faults on program behavior 
Czeck and Siewiorek employed simulated fault injec- 

tion to study the effects of gate-level faults on program 
behavior in the IBM RT PC.5 They exhaustively injected 
one-cycle inversion faults into 10 key CPU locations across 

Fault 

overwrite 

Figure 6. State transitions under failure acceleration. All faults produce errors. 16 
percent cause failure quickly, and 33 percent cause a partial failure—with 19 
percent being partial failures that are failure-prevention or error-repair candidates. 
For 51 percent of faults, nothing happens—with 10 percent being overwritten and 
41 percent remaining as potential hazards or "not determined." 60 percent of all 
faults are failure-prevention or error-repair candidates. 

Computer 

the entire execution time of a matrix multiplication and a 
recursive Fibonacci program. They incorporated several 
different error-detection mechanisms (EDMs) into this 
processor's simulation model. Figure 5 illustrates possible 
fault manifestations and error propagation to the EDMs. 
An injected fault initially caused a minor error. If the minor 
error later propagated to and was detected by an EDM, it 
became a monitoring error. A severe error occurred when 
a monitoring error disrupted control flow. The program 
would then either complete with correct or incorrect 
results or terminate through a time-out or fatal error. Table 
5 reports the outcomes for both work loads. Of the 18,900 
transients injected, 60 to 70 percent were inserted into 
idle hardware in the processor and eventually overwrit- 
ten. Of those faults that were not overwritten, approxi- 
mately 30 to 40 percent lead to normal program 
completion, while over 60 percent produced severe errors. 
Czeck and Siewiorek later developed a model predicting 
faulty system behavior from work load attributes such as 
instruction type, control flow structure, and instruction 
mix, based on these experimental results. 

Failure acceleration 
Chillarege and Bowen introduced the concept of failure 

acceleration to increase the speed at which a system tran- 
sitions between the good, erroneous, and failed states dur- 
ing fault-injection experiments.6 They accomplished this 
by decreasing fault and error latency and increasing the 
probability of a fault causing a failure, without altering 
the fault model. The idea was utilized in a study involving 
70 experimental runs that filled a random page of real stor- 
age in an IBM 3081 mainframe with bytes of hexadecimal 
FF. This faulty bit pattern emulates the effects of a soft- 
ware overlay, which arises when a program writes into an 
incorrect storage area. During the experiment, the system 
executed simulated on-line database transactions that 
kept CPU utilization between 85 and 90 percent. The 
resulting state transition diagram (depicted in Fig- 

ure 6) indicates that only 
16 percent of the injected 
faults caused the system to 
quickly crash. One third of 
the observations were clas- 
sified as partial failures, 
representing some loss in 
service without any adverse 
effect on the primary appli- 
cation. In 51 percent of the 
experimental runs, nothing 
happened within 15 min- 
utes of the fault injection. 
Roughly half of these re- 
sponses were later identi- 
fied as potential hazards, or 
errors that had caused sig- 
nificant damage to the sys- 
tem but—under the pre- 
vailing operating state— 
would remain dormant. 
There was adequate time 
to repair 60 percent of the 
errors that did not affect 

mummst-. 
Potential hazards   g^aajj^centg 

41   .£,     Not determined    j|$9TOrcent? 

percent MiK^^^I^TjIÄ^SjSSjiSsä^^^? 

60 percent failure-prevention 
and error-repair candidates 
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the short-term availability of the system. 
- Chillarege and Bowen discussed failure 

prevention and error repair techniques to 
detect and remove these errors and avert 
the loss of primary service. 

Transient errors impact 
availability 

Goswami and Iyer explored the impact 
of latent and correlated transient errors on 
a commercial fault-tolerant system's avail- 
ability.7 The target for this study was the 
triple-modular redundant (TMR) process- 
ing core of the Tandem Integrity S2. 
Processor modules are triplicated in this 
machine, and a majority voter masks erro- 
neous outputs from any one processor. 
Goswami and Iyer used the Depend tool to 
inject transients into a functional-level sim- 
ulation of the system's CPUs and memories. They simu- 
lated system operation 10 to 60 times, over periods of up 
to 200 years, to obtain statistically significant MTBF esti- 
mates. They considered three different error arrival rates 
(Xi = 1/24 hours, \ = 1/72 hours, and X^, = 1/120 hours) 
and latencies, based on the analysis of real error data col- 
lected from other systems. The results graphed in Figure 
7 show that latent transients alone did not adversely affect 
the system's MTBF. However, when 85 percent of the 
injected errors were correlated by even a small percent- 
age, the degradation in MTBF was enormous. To sustain 
a high MTBF in the presence of latent errors, Goswami and 
Iyer suggested frequent memory scrubbing and reducing 
the time required for a CPU power-on self-test. In other 
experiments, they measured the coverage and latency of 
two memory-scrubbing schemes running under a simu- 
lated application program. 

Evaluating proposed designs 
The studies discussed so far focused on validating exist- 

ing systems, but fault injection can also evaluate the 
dependability of proposed designs. We have used simulated 
fault injection to analyze the reliability of several alterna- 
tive TMR architectures.8 Bidirectional voting (BDV) on both 
memory read and write accesses is typically performed in 
TMR systems. We proposed read-only voting (ROV) and 
write-only voting (WOV) to reduce the voting performance 
penalty through a small sacrifice in reliability. We used the 
React (Reliable Architecture Character-ization Tool) fault- 
injection testbed to empirically compare these three differ- 
ent designs. React simulated each TMR system's processors, 
memories, and voter at the functional level. The processors 
executed a synthetic work load, while permanent and tran- 
sient faults were injected into the system components at 
exponentially distributed interarrival times. Figure 8 shows 
the reliability/performance tradeoff obtained via unidi- 
rectional voting. One million TMR systems of each type 
were simulated over a 100-hour mission to generate these 
plots. For equal processor and memory module failure rates 
(Xp and X„, respectively) in the upper plot, the reliability 
was significantly higher for BDV than for either the ROV 
or WOV architecture. However, when the memory failure 
rate was 10 times greater than the processor failure rate, 

01 

0.5    1     1.5    2    2.5 
Error latency (hours) (b) 

0.5        1        1.5 
Percent correlation 

Figure 7. Effect of latent and correlated errors on MTBF (mean 
time between failures): (a) uncorrelated latent errors; (b) 
correlated latent errors. 

the difference between the reliability curves shrank in the 
lower plot. Our results indicate that in many cases, the 
unidirectional-voting TMR systems give up a little reliabil- 
ity for a potentially large increase in performance. 
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Figure 8. Reliability trade-off of the alternative 
triple-modular redundant (TMR) designs: (a) equal 
processor and memory module failure rates (X = X« 
= 10-' failures/hour); (b) memory module failure rate 
greater than processor module failure rate. 
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FAULT-IIUJECTIOW TOOLS 
Most fault-injection experiments were not designed 

around a formalized methodology. Experimenters typi- 
cally developed customized approaches to validate each 
new system. This makes it difficult to apply specific results 
from different studies when analyzing other systems. 
Moreover, the complexity of today's systems can make the 
fault space (defined as fault type x location x injection 
rime) huge. This means many experiments must be per- 
formed to achieve statistical confidence in the depend- 
ability metric being measured. To obtain the most accurate 
results in the shortest time, we must accelerate the injec- 
tion and measurement processes. Fault-injection tools 
address these problems by integrating models, methods, 
and measurements into a generalized framework for con- 
ducting automated experiments on a variety of systems. 

Messaline 
Various fault-injection tools can evaluate physical sys- 

tems, but few offer the versatility of Messaline, which was 
developed by LAAS-CNRS (Laboratory for the Analysis of 
System Architectures at the National Center for Scientific 
Research), France.9 Its design is based on a formalized fault- 
injection methodology. The result is a flexible testbed capa- 
ble of simultaneously injecting multiple, pin-level faults into 
different target systems to collect coverage, latency, and 
error-propagation measurements. A host computer man- 
ages fault injection by generating the test sequence, pro- 
viding runtime execution control, and archiving data for 
analysis. Messaline has validated a centralized computer 
interlocking system for railway control and the distributed 
communication system of the Esprit Delta-4 project. 

Fiat 
The Fault-Injection-Based Automated Testing environ- 

ment combines the flexibility of software control with 
hardware emulation, to evaluate the dependability of 
fault-tolerant distributed systems.10 Fiat uses software- 
implemented fault injection to (erroneously) set and clear 
bytes in the memory images of programs. The programs 
execute on a network of machines configured to model a 
particular system architecture. This tool was realized with 
four IBM RT PCs connected via a token ring at Carnegie 
Mellon University. Fiat has been used to measure cover- 
age and latency, classify failures, and investigate the effects 
of fault type and work load on these metrics. 

Ferrari 
The Fault and Error Automatic Real-Time Injector was 

designed at the University of Texas to estimate the cover- 
age and latency of fault-tolerance mechanisms." Like Fiat, 
it uses software-implemented injection to emulate hard- 
ware faults. However, instead of injecting errors directly 
into memory, Ferrari traps instructions affected by the 
fault so that a routine can be executed to mimic system 
behavior in the presence of the real fault. Various perma- 
nent and transient hardware faults, program control-flow 
errors, and user-defined faults/errors can be injected. 
Running on a Sun SparcStation under X Windows, Ferrari 
has evaluated the effectiveness of several concurrent error- 
detection techniques embedded in application software. 

Focus 
The Focus simulation environment conducts fault sen- 

sitivity experiments on chip-level designs.1 Transient faults 
are injected through a runtime.modification of the circuit, 
whereby a time-dependent current source is added to a 
device-level node. The current source deposits excess 
charge on this node to represent the penetration of an 
alpha particle or other electrical disturbance. The soft- 
ware provides various statistical measures to quantify fault 
sensitivity, including charge thresholds, error distribu- 
tions, and two state-transition models that describe error 
generation and propagation. Focus uses a graphical analy- 
sis facility for Sun workstations, letting it visualize fault 
activity in a chip's functional units and error propagation 
on the major interconnects to external pins. Focus was 
developed at the University of Illinois and was used to ana- 
lyze a dual-channel jet-engine controller. 

Depend 
The Depend environment is a joint dependability and 

performability evaluation tool that analyzes fault- 
tolerant architectures at the system level.7 This process- 
based simulator provides a library of objects to behav- 
iorally model a system's hardware components. Using 
these objects, a control program written in C+ + simulates 
system operation and models system software. The objects 
automatically inject faults, initiate repairs, and compile 

statistics—such as the num- 
ber of failures per compo- 
nent and the component's 

React is a MTBF—that can be graphi- 
software cally displayed or included 

testbed that in a report. Permanent, 
abstracts transient, and user-defined 
multiprocessor faults can be injected with 
systems at latency or at correlated 
the architectural times.   A   fault-injection 
level. scheme based on work load 

is also available. Depend 
was developed at the Uni- 

versity of Illinois and has been used to analyze the Tandem 
Integrity S2 commercial fault-tolerant processor and a 
load-sharing distributed system. 

React 
In a cooperative effort between the University of 

Massachusetts and Texas A&M, our group has produced 
the Reliable Architecture Characterization Tool.12 React is 
a software testbed that abstracts multiprocessor systems 
at the architectural level. It performs life testing through 
simulated fault injection to measure dependability. This 
involves conducting a statistically significant number of 
experiments or trials, each simulating the operation of an 
initially fault-free system. Randomly occurring faults are 
injected into each system until it fails or reaches a specified 
censoring time. Failure statistics are collected during each 
trial and are later aggregated over the entire simulation 
run to compute dependability metrics. 

We have incorporated detailed system, work load, and 
fault/error models into the React software. Figure 9 
depicts the system model employed by React. This class of 
architectures contains one or more processor modules (P) 
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interconnected via buses (B) to one or more memory mod- 
ules (M) through a block of fault-tolerance mechanisms. 
The fault-tolerance mechanisms supply the hardware nec- 
essary to detect, correct, or mask errors during memory 
accesses and to reconfigure the system when modules fail. 
This framework provides the flexibility needed to repre- 
sent many different architectures without requiring cus- 
tom simulation models for each one. React can analyze 
multiprocessor systems that use N-modular redundancy, 
duplication and comparison, standby sparing, or error- 
control coding to achieve fault tolerance. 

React assumes a synthetic work load. Processors con- 
tinually perform instruction cycles consisting of several 
possible memory references and the simulated execution 
of an instruction. React does not use real application code 
and data, but allows errors to propagate throughout the 
system as if the software were actually being executed. 
The work load model is specified by a mean instruction 
execution rate, the probabilities of performing a memory 
read and write access per instruction, and a locality-of- 
reference model that determines which locations are 
accessed. These parameters can easily be extracted from 
memory reference traces collected during application soft- 
ware development. 

Permanent and transient faults can be automatically 
injected into a system's processors, memories, and fault- 
tolerance mechanisms. Fault occurrence times are sampled 
from a Weibull distribution. Faults affect a processor's data 
and control paths and a memory's bit-array and addressing 
logic. Each faulty component's erroneous behavior is gov- 
erned by a stochastic model that accounts for both fault and 
error latency. We derived these stochastic models from the 
results of other low-level fault-injection experiments. Repair 
times for failed components are assumed to have a log- 
normal distribution after a fixed logistics delay. The time 
required to reintegrate a repaired component back into the 
system and the time to reboot the system aftera critical fail- 
ure are constant and user specified. 

We demonstrated the effectiveness of React by analyz- 
ing several alternative multiprocessor architectures. Spe- 
cifically, we investigated two dependability tradeoffs 
associated with triple-modular redundant (TMR) systems. 
The first study explored the reliability/performance trade- 
off in voting unidirectionally instead of bidirectionally on 
either memory read or write accesses. The second study 
examined the reliability/cost tradeoff in duplicating and 
comparing (via error-detecting codes) the memory mod- 
ules rather than triplicating and voting on those modules. 
Both studies showed that a small sacrifice in reliability can 
be made for potentially large performance increases or 
cost reductions compared to traditional TMR design. 

FAULT INJECTION HAS BECOME A VALUABLE ASSET for evalu- 
ating computer system dependability. It has been used to 
obtain analytical-model parameters, validate existing 
fault-tolerant systems, and synthesize more reliable sys- 
tem designs. However, many problems remain. 

One challenge is to reduce the large fault space associ- 
ated with highly integrated systems. This will require 
improved sampling techniques and mode*ls that equiva- 
lent^ represent the effects of low-level faults at higher 

B   Bus 
M   Memory module 
P  Processor module 

abstraction levels. The im- 
pact of specification and 
design faults, particularly 
in software, is another 
largely unexplored prob- 
lem. A better understand- 
ing of their occurrence is 
necessary before we con- 
sider injecting specification 
and design faults to validate 
computer-system depend- 
ability. Another obstacle is 
the difficulty in controlling 
the injection of environ- 
mentally induced faults. In 
addition, little is known 
about the relationship be- 
tween faults in-jected in a 
laboratory and those actu- 
ally occurring in the field. 

Finally, most fault-injection experiments are essentially 
case studies of particular systems. We must develop ways 
of generalizing machine-specific results to expand their 
applicability to other systems. Growing dependence on 
computers in life- and cost-critical applications makes this 
essential. | 
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Figure 9. Class of archi- 
tectures that React can 
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Abstract 
This paper presents a technique to provide seamless 

communications in mobile wireless networks. The goal 
of seamless communication is to provide disruption 
free service to a mobile user. A disruption in service 
could occur due to active handoffs (handoffs during 
an active connection). Existing protocols either pro- 
vide total guarantee for disruption free service incur- 
ring heavy network bandwidth usage (multicast based 
approach), or do not provide any guarantee for dis- 
ruption free service (forwarding approach). There are 
many user applications thai do not require a "total" 
guarantee for disruption free service but would also not 
tolerate very frequent disruptions. This paper proposes 
a novel staggered multicast approach which provides a 
probabilistic guarantee for disruption free service. The 
main advantage of the staggered multicast approach is 
that it exploits the performance guarantees provided 
by the multicast approach and also provides the much 
required savings in the static network bandwidth. 

The problem of guaranteeing disruption free service 
to mobile users becomes more acute when the static 
backbone network does not use any packet numbering 
or does not provide retransmissions. Asynchronous 
Transfer Mode networks, the future of B-ISDN, dis- 
play these properties. To make our study complete, 
we present a possible implementation of our scheme 
for wireless ATM networks. 

1    Introduction 
Mobility has opened up new vistas of research in 

networking. With the availability of wireless interface 
cards, mobile users are no longer required to remain 
confined within a static network premises to get net- 
work access. Users of portable computers would like 
to carry their laptops with them whenever they move 
from one place to another and yet maintain transpar- 
ent network access through the wireless link. Inte- 
grated voice, data and image applications are going 
to be used by millions of people often moving in very 
heavy urban traffic conditions. 

On the downside, mobility brings along with it a 
myriad of network management problems. The prob- 
lems could be broadly classified as mobility manage- 

* Research reported is supported in part by AFOSR under 
grant F49620-94-1-0276, and Texas Advanced Technology Pro- 
gram under grant 999903-029. 

ment related and connection management related. In 
this paper we will primarily deal with a key problem in 
mobile wireless networks related to connection man- 
agement. The problem deals with providing disrup- 
tion free service to mobile users. 

Future personal communication networks (PCN) 
will allow users to engage in bi-directional exchange of 
information including but not limited to voice, data, 
and image, irrespective of location and time, while 
permitting users to be mobile. Even though, near 
term personal communication services (PCS) are go- 
ing to be voice-oriented, PCN are expected to support 
multimedia PCS in the long term [13]. This will spur 
requirements for high capacity wireless networks. 

A typical PCN with mobile users [8, 9, 10] com- 
prises of a static network and communication links 
between them. Some of the fixed hosts, called base 
stations (BS)1 are augmented with a wireless inter- 
face and they provide a gateway for communication 
between the wireless and static network. Due to the 
limited range of wireless transceivers, a mobile user 
can communicate with a BS only within a limited ge- 
ographical region around it. This region is referred to 
as a base station's cell. A mobile user communicates 
with one BS at any given time. Each BS is responsible 
for forwarding data between the mobile user and the 
static network. 

When a mobile host is engaged in a call or data 
transfer, it will frequently move out of the coverage 
area of the mobile support station it is communicat- 
ing with, and unless the call is passed on to another 
cell, it will be lost. Thus, the task of forwarding data 
between the static network and the mobile user must 
be transferred to the new cell's mobile support station. 
This process, known as handoff, is transparent to the 
mobile user. Handoff helps to maintain an end-to-end 
connectivity in the dynamically reconfigured network 
topology. 

As the demand for services increase, the number of 
cells may become insufficient to provide the required 
quality of service. Cell splitting can then be used to 
increase the traffic handled in an area without increas- 
ing the bandwidth of the system. In future, the cells 
are expected to be very small (less than 50 meters in 
diameter) covering the interior of a building. The re- 

Base stations are sometimes called mobile support stations. 
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auction in the cell size causes an increase in the num- 
ber of handoffs, thereby increasing the signalling traf- 
fic (network load) due to the handoff protocol mes- 
sages. In addition, handoff also causes a disruption in 
service if it is not done in a fast and efficient manner. 
In this paper we will primarily deal with design and 
implementation issues of handoff protocols to ensure 
disruption free service. 

Providing connection-oriented services[14, 15, 16, 
17, 18] to the mobile users requires that the user al- 
ways be connected to the rest of the network in such 
a manner that its movements are transparent to the 
users. Providing disruption free service is a stronger 
requirement than mere connection-oriented services. 
In addition to maintaining the connection, the net- 
work will need to ensure that the delay experienced 
by the data packets over the network is less than a 
fixed time called the deadline. The deadline is in turn 
determined by the quality of service (QOS) required 
by the users. The goal of seamless communication is 
to provide disruption free service to a mobile user. A 
disruption in service could occur due to active hand- 
offs (handoffs during an active connection). This is 
because traditional protocols require the old BS to 
forward data packets to the new BS. Thus, every time 
a mobile user moves into a new cell during the con- 
nection (active handoff), the user will see a break in 
service while the data gets forwarded to it from the 
old BS via the new BS. 

We first present the proposed approach for pro- 
viding disruption free service to mobile users. Our 
work differs from existing protocols in that the net- 
work load incurred by the proposed approach is sig- 
nificantly lower as compared to others. The number of 
disruptions seen by the user will depend on the number 
of handoffs incurred during the lifetime of the connec- 
tion. The number of handoffs in turn depends on the 
mobility pattern of the user. In this paper we use two 
mobility models to analyze the proposed approach. In 
the first model, the user spends very little time in 
a cell (handoffs occur frequently), while in the other 
model the user spends a long time in a cell (hand- 
offs occur infrequently). Analysis shows that for both 
these models, the proposed approach significantly re- 
duces the network bandwidth usage without violating 
the quality of service (QOS) requirements specified by 
the user application. 

The problem of guaranteeing disruption free service 
to mobile users becomes more acute when the static 
backbone network does not use any packet numbering 
or does not provide retransmissions. Asynchronous 
Transfer Mode networks, the future of B-ISDN, dis- 
play these properties. The second half of the paper 
deals with implementation issues of the proposed ap- 
proach. The backbone network has been assumed to 
be an asynchronous transfer mode (ATM) network. 
The vast transmission capacity offered by an ATM 
broadband network can provide communication ser- 
vices to a wide range of applications including video 
and audio. It is thus a natural choice for multime- 
dia services. ATM is basically a connection-oriented 
switching technology. Users need to establish a fixed 
route called a virtual channel (VC) before any infor- 

mation can be exchanged. To make maximum use of 
available bandwidth, multiple VCs can be statistically 
multiplexed over the same link. Issues related to ATM 
have been comprehensively treated in [19, 22, 23]. 

While ATM promises to do away with the present 
problems faced by the telephony community, it raises 
a number of issues for the mobile computing indus- 
try. As mentioned before, existing ATM protocols do 
not offer any packet numbering and prohibit packet 
reordering. In this scenario maintaining a continu- 
ous (disruption free) communication link to the mo- 
bile host becomes complicated. We thus need to en- 
sure that once a handoff takes place no packet is lost 
and deadlines are met, i.e., the packets that have been 
transmitted to the previous BS and which have not 
reached the mobile host due to handoff, are some- 
how delivered to it within the given time constraint. 
Keeping these problems in mind, we propose an eas- 
ily implementable technique to provide disruption free 
service to mobile hosts in wireless ATM networks. 

The rest of this paper is organised as follows. In 
section 2 we briefly review related work. The basic 
idea behind our scheme is presented in section 3. Sec- 
tion 4 presents the issues related to implementation 
of the proposed approach using ATM as the backbone 
network. Concluding remarks are presented in section 
5. 

2    Related Literature 
Keeton et al in [2] proposed a set of algorithms to 

provide connection oriented network services to mo- 
bile hosts for real time applications like multimedia. 
Their solutions lay excellent groundwork for work in 
this area but did not guarantee disruption free ser- 
vice. In fact their scheme was shown to suffer from 
extended intervals of time when service to the mo- 
bile host was disrupted. A study done in [1] shows 
that if the handoff protocol required forwaraing data 
between the BSs connected by physical links, then a 
high bandwidth (between 48Mbps and 96Mbps) is re- 
quired just to forward these data packets. Moreover, 
loops can be formed in the connection path if forward- 
ing is employed. This will lead to inefficient network 
utilization. 

A multicast based solution was proposed in [1]. In 
this approach, the data packets for a mobile host are 
multicast to the BSs of the neighboring cells so that 
when the host moves to a new cell, there are data pack- 
ets already waiting for it and thus, there is no break in 
service. It is evident, however, that this scheme is not 
cost effective. As the number of users in the network 
increases, the amount of network bandwidth used up 
by the multicast connections is going be prohibitively 
high. In [1], the cost of such a multicast scheme was 
determined to be the buffer overhead at the BSs. Our 
view of the problem is that the major component of 
cost incurred in a multicast based approach will be the 
amount of extra bandwidth used, and not the buffer 
overhead at each BS. This argument is supported by 
the availability of cheap memory but expensive net- 
work bandwidth2. 

The cost of a 30 minute call from USA to Japan is approx- 
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As pointed out in [3], the network call processor3 in 
a static network becomes the bottleneck in an environ- 
ment where handoffs are frequent and require exces- 
sive interaction with a base station - an inherent prob- 
lem associated with the work in [2]. To alleviate this 
problem, the authors in [3] proposed a new network 
architecture which made use of virtual circuit trees to 
minimize handoff processing. However, it does not 
discuss about providing disruption free service when a 
handoff takes place - the mainstay of applications like 
multimedia [23]. 

We find that while existing literature is a rich source 
of protocols and models for tackling the problem in 
hand, there does not exist a cost-effective solution for 
providing disruption free service. 

3    Proposed Approach 
Traditional multicast-based schemes require the 

packets to be multicast throughout the length of the 
connection. This leads to wastage of network band- 
width. The communication links from the switch to 
the BSs other than the BS of the cell where the mo- 
bile host is currently located get unnecessarily loaded. 
As the number of mobile hosts increase in a cell, the 
total network usage due to multicast connection for 
each host will become enormous. Due to this extra 
network usage, new connections might be blocked be- 
cause the network capacity is exceeded. 

The thrust of our approach is to avoid unnecessary 
multicast. A multicast throughout the length of the 
connection may prove to be unecessary if the network 
had some information - e.g., how long is the mobile 
host going to remain in the same cell (this period is 
called cell latency). If the network has such informa- 
tion, then the multicast need not be done during that 
period of time. 

The main idea of the proposed approach is to "stag- 
ger" the multicast initiation by the amount of time 
one is sure that the host remains within a cell, i.e., 
for a time interval equal to the cell latency. The cell 
latency will solely depend on the mobility model of 
the host. In this paper we will analyze the proposed 
approach based on two mobility models. One model 
is pessimistic in nature, and the other optimistic. By 
pessimistic we mean that the cell latency for a mobile 
host is very small. On the other hand in the optimistic 
model, the mobile host remains in a cell for a longer 
time. 

We will now present the staggered multicast ap- 
proach. 

3.1     Staggered Multicast 
If the mobility pattern of a user could be modelled 

in such a way that it can be ascertained with a certain 
probability that the user is going to remain in the same 
cell for ts amount of time, multicast could be avoided 

imately equal to the cost of 1 Mbyte of RAM. 
The role of the neltuori call processor is to establish a path 

or route at connection setup time. While doing so it takes into 
account the network load so as to balance the load on each 
network node. 

for this amount of time. The value of t, then4 gives 
us a measure of the stagger time than can be safely 
introduced before initiating a multicast. This way, we 
will save on the network usage, and still guarantee 
disruption-free service with a certain probability. 

Let P( be the probability of disruption during the 
i-lh handoff, and U be the cell latency before the :'- 
th handoff. Let tmi be the time spent in multicast 
mode before the i-th handoff. A disruption occurs 
when a mobile host initiates a handoff before multicast 
has been initiated. Then the probability of disruption 
during the i-th handoff can be given as, 

Pi = Pr[t, > U] 

Let the number of handoffs occuring over the length 
of the connection time Tc be Nk- Let Pdisrupt be 
the average probability of disruption during a handoff. 
Pdisrupt is determined as, 

*disru Pt 

1      N" 

= £?> 
The value of Pdismpt can now be used as a measure of 
the Quality of Service (QOS). There are a number of 
applications that cannot tolerate disruptions during 
the time of connection, i.e., Pdisrupt = 0. Two ex- 
isting examples of such applications are telemedicine, 
and video conferencing. With increased availability 
of mobile computing applications, a large number of 
hitherto unexplored applications will emerge. The ap- 
plications mentioned here are but only a small sample. 

Star! 

lml lrr2 lm3 W 

Figure 1: Total Guarantee 

Figure 1 presents an example showing the times of 
handoffs and multicast initiations. The times B, D, 
F, and H represent the time at which handoff takes 
place. The times A, C, E, and G represent the time 
at which multicast is initiated. The cell latencies for 
Figure 1 are <i = t, + tml, t2 = t, + tm2, and so on. 
For total guarantee, the following should hold. 

v«M<*< JVfc,*, <*,• 

i.e., for all handoffs a multicast is initiated within the 
associated cell latency interval. 

However, there are a lot of applications that do 
not have a strict requirement of disruption free ser- 
vice during every handoff.  A probabilistic guarantee 

It should be mentioned here that the actual time for stagger 
is less than t3, because the time to set up the multicast con- 
nections should be taken into account. This has been dealt in 
greater detail in Section 4.3 for a wireless ATM network. 
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is sufficient for such applications, i.e., Pdisrv.Pt > 0. 
Examples of such applications include ftp, audio chan- 
nels and movies. If the QOS requirement can be ex- 
pressed as a probablisitic guarantee for disruption free 
service, then the multicast initiation could be further 
staggered resulting in an even greater reduction of net- 
work usage. 

Let us consider a picocellular environment, which 
is more suited for pedestrian traffic. Let « = 0.4m, T 
= 0.25 sec. Therefore, a = 1.0. We vary the radius 
of the circular cell R from 10m to 50m. The variation 
of the probability with time is illustrated in Figure 3. 
As seen in the figure, the probability of the mobile 

Probability of remaining in the cell 

L 

m 

Start 
B CD 

w w 
F__ G 

lm3 

Disruption in service 
during handoff 

Figure 2: Probabilistic Guarantee 

To illustrate this probabilistic scheme we present 
an example as shown in Figure 2. This figure shows 
the times of handoffs and multicast initiations in the 
multicast scheme that provides a probabilistic guar- 
antee. The times B, D, E, and G represent the time 
at which handoff takes place. The times A, C, and F 
represent the time at which the multicast is initiated. 
As noticed in the figure, there is a disruption in service 
during handoff at time E, because, there was no mul- 
ticast initiated before the handoff. Thus, a disruption 
occurs during the i-th handoff when the stagger time 
ts is greater than the cell latency time i,-. 

_ In the absence of any empirical data for user mo- 
bility, we propose to evaluate the effectiveness of our 
scheme using two mobility models, which we believe 
cover a wide range of user mobility. At this point we 
would like to mention that the main aim of this*paper 
is not to show that the two models cover the whole 
spectrum of user mobility, but, to show that with the 
aid of user mobility information, we can drastically 
reduce the network load and still provide disruption- 
free service. We will be able to correctly estimate the 
benefits obtained from the proposed approach only if 
we can accurately model the user mobility. 
3.2 Mobility Models 
3.2.1     Optimistic Model 

The optimistic model is based on the two dimensional 
random walk model. Let the two dimensions be the X 
axis and the Y axis. In such a model, the user tosses 
two coins every T seconds. Based on the resulting 
head-tail combination, the user will decide to take a 
step of size s meters in a specific direction (e.g., head- 
head results in a step in the north-east direction). Let 
the distance of the user with respect to the center 
of the circular cell at time t be r(t). As derived in 
Appendix 1, the probability that a mobile user will 
remain in the same cell at time t is given as, 

Prob(r(t) < Ä) = 1 

where, R is radius of the cell, and a 

e   3o,i (1) 

in minutes 

s7/T. 

Figure 3: Probability of being in a cell 

host remaining in a cell decreases with time. An in- 
teresting observation however is that even after 3.25 
minutes (195 seconds), the probability that the user 
is still in the same cell (R = 30m) is as high as 90%. 
This mobility model represents the class of users who 
spend a lot of time in a cell. 

3.2.2     Pessimistic Model 

The pessimistic model is based on the mobility model 
proposed in [5]. In this model the mobile user is as- 
sumed to be moving at an average velocity of V. The 
direction of movement is uniformly distributed over 
[0,2-}. The mobile users are assumed to be uniformly 
distributed over the cell area with a density of p. If the 
length of the cell boundary is L, and the cell area 5, 
the number of mobile users crossing the cell boundary 
per unit time is given by ^. If p can be assumed to 
remain constant over the entire cell area, the average 
cell crossing rate of a mobile user is given by ^j. For 
circular cells, L will correspond to the perimeter of a 
cell, and thus j = jj. It follows that the average cell 
latency of a mobile user is given §£. As in [5], we 
will assume that the cell latency of a mobile user is 
exponentially distributed with a mean $. 
3.3 Performance Analysis of the Stag- 

gered Multicast Approach 
The overhead of the staggered multicast scheme can 

be characterized by the total time spent in the multi- 
cast mode Tm as compared to the length of connection 
Tc. Tm is determined as 

ffK 
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where, <mt- is the time spent in multicast mode before 
the i-th handoff, and Nh is the number of handoffs oc- 
curing over the length of connection. The total time 
spent in the unicast mode, Tu, is then given by the 
difference, Tc — Tm. We determine the overhead of the 
multicast scheme as the fraction of the total connec- 
tion time spent in the multicast mode, 

Overhead — -^- 

The QOS measure of the staggered scheme (char- 
acterized by Pdisrupt) is now given as 

QOS = 1 - Pdisrupt 

3.3.1     Performance of Optimistic Model 

In this section we present the results of the staggered 
multicast scheme obtained using the optimistic model. 
We performed simulations to analyze the staggered 
multicast scheme. The radius of the circular cell R 
was varied from 10m to 50m. The time of connection 
Tc, was fixed to be 100 minutes. The step size s was 
chosen to be 0.4m, and the time interval between two 
tosses T was chosen to be 0.25 s. 

As stated earlier, we characterize the overhead as 
Tm/Tc. Figure 4 illustrates the variation of overhead 
with the stagger time ts. It is noticed in Figure 4 that 
the overhead reduces as the stagger time increases. 
This is because as stagger time increases, the amount 
of time spent in multicast mode reduces. Thus, the 
overhead, determined as Tm/Tc, reduces. It can also 
be noticed that for a given stagger time, the overhead 
increases with an increase in cell radius. This is be- 
cause as the radius increases, the time interval between 
handoffs increases. If stagger time is kept constant, 
we are not making use of the potentially extra time 
available due to increased cell radius. As a result the 
fraction of time spent in multicast mode increases. 

We also evaluated the probability of a disruption 
during a handoff, PdUrupt ■ As stated earlier, a disrup- 
tion occurs only if multicast is not initiated before a 
handoff occurs. Figure 5 illustrates the variation of 
probability of disruption with stagger time ts. Higher 
the stagger time, higher is the probability of disrup- 
tions. It can also be noticed that for a given stagger 
time, the probability of disruption increases as the ra- 
dius of the cell decreases. This is because as the ra- 
dius decreases, the probability of remaining in a cell 
reduces for a given stagger time. Therefore, the prob- 
ability of disruption increases. 

Using these results, the network can determine the 
appropriate stagger time for a user. Let us illustrate 
it with an example. Let the radius of the cells in the 
network be 30 m. 

Suppose that the users in a network are maintain- 
ing non-critical connections. This means that a proba- 
bilistic guarantee will suffice. Let the QOS demanded 
by the users be 75 %. This means that Pdisrupt = 25%, 
i.e., on an average three out of four h'andoffs will be 
guaranteed to be disruption free. Then, using Fig- 
ure 5, we can determine the appropriate stagger time, 

0                 200                400                600 800 1000 
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Figure 4:   Optimistic Model :   Overhead Vs Stagger 
Time 
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Figure 5:  Optimistic Model : Probability of Disrup- 
tion Vs Stagger Time 
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p- which is 650 seconds (approx.   11 minutes).  There- 
\A fore, the multicast initiation can stagger by 11 min- 

1 J utes and we will still provide the desired QOS to the 
users.  The overhead of such a staggered scheme can 
be determined using Figure 4 to be 50%. Therefore, 
the network spends only 50% of the total connection 

L ' time in multicast mode for the user.  In a traditional 
multicast based solution for disruption free service, 
the network spends 100% of the connection time in 
multicast mode [1].   Comparing it to the traditional 
multicast based solutions, there is a 50% savings in 
network bandwidth. 

Suppose on the other hand, a user is maintaining 
a critical connection which demands total guarantee 

-C, of disruption free service, i.e., the QOS demanded by 
the user is 100 %.  Even though a non-zero value of 
stagger time could be obtained for Pdisrupt = 0 in 

■ J the optimistic model (e.g., ts = 3 minutes for R = 
;■'.■■ 30m in Figure 5), this may not be true in general for 

other models. In fact the next model shows that for 
total guarantee of disruption free service, stagger time 

■-.: has to be zero.   In other words, for total guarantee 
|;4 of disruption free service, multicast should be done 

throughout the length of the connection. 

/v;" 3.3.2    Performance of Pessimistic Model 

Simulations were performed to analyze the multicast 
scheme using the pessimistic mobility model. The mo- 
bility model for this part was same as the mobility 
model proposed in [5]. The radius of the circular cell 
R was varied from 10m to 50m. The time of connec- 
tion Tc, was fixed to be 100 minutes. The average ve- 
locity V was chosen to be 1.6 m/s (approx 5.7 km/hr, 
for a pedestrian user). 
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Figure 6:  Pessimistic Model 
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Overhead Vs Stagger 

The trends in the variation of overhead (Figure 6) 
and probability disruption (Figure 7) with respect to 
stagger time for the pessimistic mobility model are 
similar to the optimisitic model. But as was expected, 
the allowable stagger time in the pessimistic model for 
a particular QOS is very low compared to the allow- 
able stagger time in the optimistic mo'del. For exam- 
ple, when R = 30m, QOS = 75 %, the allowable stag- 
ger time in the optimistic model is 650 seconds.   On 

the other hand for a pessimistic model, the allowable 
stagger time is only 9 seconds. 
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Figure 7: Pessimistic Model : Probability of Disrup- 
tion Vs Stagger Time 

Another noticeable difference with the optimistic 
model is that there is no stagger time allowable.for to- 
tal guarantee service (i.e., when Pdisrupt = 0). Thus, 
for a user whose mobility pattern can be modelled 
with the pessimistic model, multicast has to be done 
throughout the connection time if the user desires to- 
tal guarantee of disruption free service. On the other 
hand, if the user requires only a probabilistic guaran- 
tee, then a non-zero stagger can be introduced. For 
example, if the QOS demanded by the user is 75 %. 
Then, using Figure 7, we can determine the allowable 
stagger time to be 9 seconds. The overhead of such a 
staggered scheme can be determined using Figure 6 to 
be 73 %. Therefore, when compared to the traditional 
multicast schemes, there is a 27% savings in network 
bandwidth. 

3.3.3    Discussion 

In this section we have presented a staggered multi- 
cast approach. The main features of this approach are 
that it saves network bandwidth by providing a prob- 
abilistic guarantee for disruption free service. We ana- 
lyzed the proposed approach for two mobility models. 
These models represented two different classes of mo- 
bile users - those with high cell latency, and those with 
low cell latency. The results indicate that regardless 
of the mobility model, the proposed approach provides 
tremendous savings in network bandwidth for appli- 
cations that require a probabilistic guarantee. We ex- 
pect the performance of the proposed approach for a 
typical user mobility model to lie somewhere in be- 
tween the performance gains obtained for these mod- 
els. 

In the next section we will present an implemen- 
tation of the proposed approach on a wireless ATM 
network. 

4    Implementation on ATM Network 
4.1     System Model 
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We view the future personal communication net- 
work as a two tier network - a backbone static ATM 
network and a peripheral wireless network. This 
model is similar to the one proposed in [4]. Figure 8 
shows ATM switches connected to base stations which 
in turn provide service to the mobile hosts. ATM cells 
are received by the base stations from the static net- 
work and forwarded to the mobile hosts. 

4.2     Protocol 
We define a multicast group gi as the set of base sta- 

tions that are included in the multicast operation for 
the mobile host i. The base stations maintain a table 
which maps each mobile host in its cell to its multi- 
cast group members. The group members for a mobile 
host can be determined based on some hints (direc- 
tion, velocity). If no hints are available, the default 
multicast group members will be the neighboring base 
stations [l]. 

The connection management problem can be di- 
vided into two phases, namely, connection establish- 
ment phase and connection maintenance phase. The 
source mobile host initiates the connection establish- 
ment phase by sending a connection request message 
to its base station. The base station forwards this 
message to its switch. The switch assigns a VCN (vir- 
tual circuit number) for the source mobile host. The 
switch then initiates a locate procedure for the des- 
tination mobile host [10, 11, 12]. Upon getting the 
location information of the destination mobile host, a 
connection is set up between the source and the desti- 
nation mobile host via the switches at the source and 
the destination. 

Our work differs in the connection maintenance 
phase. Please refer Figure 9 for the discussion. The 
thick lines in Figure 9 represent the data packets be- 
ing transferred over the static network, and the thick 
dashed lines represent the data packets being trans- 
ferred over the wireless medium between the base sta- 
tion and the mobile host. The thin lines represent the 
control messages being transferred over the static net- 
work, and the thin dashed lines represent the control 
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Figure 9: Connection Maintenance 

messages being transferred over the wireless medium. 
Once a connection is established, the switch SW is 

in the unicast mode, i.e., it forwards the data pack- 
ets to only the "current" base station BSl, which in 
turn forwards it to the mobile host mh (steps 1-2). 
After tdagger units of time5, BSl sends a multicast 
initiate message to SW (step 3). The multicast group 
members gmh are tagged along with the message. The 
switch SW then determines the crossover point for the 
multicast group members. The VCNs to the base sta- 
tions in gmh are assigned, and the switch SW sends 
back the list of VCNs to BSl which forwards it to 
mh (step 4). Upon receiving an acknowledgment from 
mh, SW enters the multicast mode. Let us suppose 
that the multicast group members are BSl and BS2. 
SW multicasts the data packets to the base stations 
BSl and BS2 (step 5). However, only the current 
base station which is J951 forwards the data packets 
over the wireless medium to mh (step 6). This con- 
tinues till the mobile host mh detects that it has to 
handoff to BS2. The mobile host mh then sends a 
handoff initiate to the new base station BS2 (step 7). 
The base station BS2 starts transmitting data to the 
mobile host (step 8). It also forwards handoff initi- 
ate message to the switch SW (step 9). The switch 
SW then terminates the connections to the multicast 
group members except for BS2 (step 10). SW then 
reenters the unicast mode and sends the data packets 
to only the "current" base station BS2, which in turn 
forwards it to mh (step 11). 

5It will be shown later that tstaggcr < ta 

stagger time derived in Section 3. 
where t, is the 
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4.3     Implementation Issues 
Given the lossy nature of the wireless medium, 

there may be a need to frame groups of ATM cells at 
the BS and assign them some kind of sequence num- 
bers. Additional bits to enable error correction and to 
allow recovery schemes may also be required for each 
frame. Likewise communication from the mobile host 
to a base station will consist of frames of ATM cells 
with additional bits as described above. Going by the 
philosophy behind ATM, it is likely that each frame 
will be small and of equal size. In line with this, we as- 
sume that all frames will be of fixed length containing 
F ATM cells. 6 

Before we can apply our scheme to an ATM envi- 
ronment, we must take into account the various prop- 
erties of ATM network protocols that make them differ 
from existing network protocols. As was mentioned 
before, ATM is a connection oriented switching tech- 
nology where connections must be established for the 
entire duration of the call. Connection establishment 
consists of assigning a VCN (virtual circuit number) 
and/or a VPN (virtual path number), and allocation 
of resources both within the network and at the source • 
and destination to support this connection. In a mo- 
bile environment we will thus need to ensure that be- 
fore a mobile host hands off, connection has already 
been established between the new base station and 
the destination. For this purpose, we make use of a 
dynamic virtual connection tree (dvci) based network 
architecture, an extension to the idea proposed in [3]. 
For sake of completeness, we will describe the virtual 
connection tree in some more detail. 

A virtual connection tree [3] is a set of cellular ATM 
switches and base stations in the static network that 
are chosen at call setup time to route ATM cells. The 
network is divided into neighboring access regions and 
the mobile host is assigned a set of VCNs, one for 
each base station in this region. As soon as the mo- 
bile host detects that it is entering another wireless 
cell, it starts transmitting its messages with the VCN 
assigned for that base station. This change in position 
of the mobile host is updated at the root of the vir- 
tual connection tree (an ATM switch that maintains 
the routing tables for this connection) as soon as the 
first ATM cell from the mobile host arrives bearing 
the new VCN. The study showed considerable reduc- 
tion in load on the network call processor. The only 
time that the network call processor participates in a 
handoff is when the mobile host changes its neighbor- 
ing access region. As noted by the authors, handovers 
within this connection tree are handled entirely by the 
mobile itself in a totally distributed fashion. 

A dvci differs from a virtual connection tree in that 
the choice of participating base stations and ATM 
switches depends on the current location of the end- 
points and may change dynamically, i.e., base stations 
and switches may be dynamically added and removed 
depending on the movement of the mobile host. All 
the base stations and ATM switches included in the 
multicast operation can now be viewed,as a dvci. Fig- 
ure 13 is an example of how bidirectional communi- 
cation takes place between two end points - both of 
which may be mobile, in a dvci using the multicasting 

approach. 
We consider an example to make the dvci approach 

more clear. Suppose that switch A is connected to 
base stations a and 6. Let a be providing a connection 
between a mobile host ml in its wireless cell and a mo- 
bile host m2 in the wireless cell of BS d which is con- 
nected to switch D. The table shown in Figure 13 rep- 
resents the routing information maintained by switch 
A. Such information is present at all switches in the 
ATM network. Data coming out of host ml carries 
VC1 (for BS a) which was assigned at connection set 
up time. Switch A translates VC1 to VC2 after a look 
up of its routing table and sends out this data through 
port 2. Switch B further translates the header infor- 
mation so that it now carries the VC3. Finally switch 
D translates this to VC5 before passing it on to the 
BS d and from there to host m2. On the return path, 
m2 sends out data carrying the VC7. Suppose the 
multicast group members for mobile host ml are base 
stations a, b and c. Then, switch D translates VC7 
to VC8 followed by translation to VC13 (and VC9 
for multicast) at switch B. Finally switch A translates 
VC13 to VC14 (and VC15 for multicast) for the mul- 
ticast members a and 6. The onward transmission to 
host ml is done by a. Now if host ml hands off to 
base station 6, it will continue normal transmission 
but with VC16, and continue receiving with VC15. It 
is easy to see that allocating VCNs to all base stations 
that are included in a multicast, will greatly ease the 
handoff process. 

The total delay experienced by an ATM cell over 
the network can be characterized by two main compo- 
nents [23, 22]. 

Tdelay — LJcons    i   L/v (2) 
where Dcons represents the constant component and 
DvaT represents the variable component of the delay. 
DCon$ depends on the the physical delay of the medium 
and the distance an ATM cell has to travel between 
source and destination. Dvar on the other hand is rep- 
resentative of the variation in queueing delays experi- 
enced by different ATM cells over the same connection 
in the network. Given the nature of delay variation 
experienced by different ATM cells, it is easy to see 
that different cells may experience different total de- 
lays over the same connection. This variation in cell 
delay is also referred to as jitter. [22] presents delay 
and delay variation objectives for two-way session au- 
dio and video services. 

Crossover points within the network have signif- 
icance when multiple connections are branching off 
from a common stream. Each connection in a mul- 
ticast operation need not start from the source but 
may in fact find an intermediate switch that is han- 
dling the connection for some other base station (See 
Figure 11 for an example of crossover point location 
during handoff.). We model the delay experienced by 
an ATM cell over different routes starting from the 
crossover point to be bounded by the times rmin and 
Tmax- The delay variation for each connection may 
now be viewed simply by a delay pipe as shown in 
Figure 10. The tail of the pipe represents the entry 
point of an ATM cell from the source. 
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It is evident from Figure 10 that at any given in- 
l -■ stant for a multicast operation, the tail of each pipe 
j'v contains the same ATM cell. However, due to differ- 

ent delays experienced on different routes, the ATM 
cells coming out from the heads of different pipes to 
the respective base stations may not be the same. 
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If the mobile host is to get consistent information 
from a base station during and after handoffs, then we 
have to make sure that the base stations involved in 
the handoff procedure have corresponding ATM cells 
in their buffers. Using this information and from the 
discussion above, it follows that the buffer requirement 
for ensuring that consistent information is present at 
the participating base stations is given by 

Buffersize > BWconn x (rmar - rmin)       (3) 

where BWconn is the bandwidth of the connection. 
The ATM cell stream originating at the source con- 

sists of cells arriving back to back with no way of dif- 
ferentiating between two data cells. Of course, special 
cells may be generated by setting the appropriate bits 
in their headers, but this is not the case with data cells 
in particular. Extensions to existing ATM protocols 
to suit the mobile environment are discussed in [4]. 
However, our solution does not require any changes in 
existing protocols but targets ATM switch fabrics to 
achieve its goals. 

In Figure 11 , BSl is the base station that is cur- 
rently transmitting to the mobile host and BS2 is the 
base station that is required to join the multicast. Af- 
ter waiting for time t,taSger, BSl sends out a request 
to the switch to include the base stations in the multi- 
cast group of MH (gMH) in the multicast operation. 
The upper bound on time taken for this is represented 
by tsetup- Note that tsetup includes the time required 
to 

MH ..>:, 

Figure 11: Handoff between Base Stations 

• find the crossover point between BSl and the base 
station farthest (in terms of number of interme- 
diate switches) from it (BS2 in Figure 11), 

• to update the multicast table entries in the 
crossover switch and 

• to send the newly allocated VCNs of each base 
station to the mobile host. 

As mentioned earlier, each time the mobile host per- 
forms a handoff5 it is necessary to ensure that the se- 
quence of frames being received from the old and new 
base stations preserve their relative order. We propose 
to overcome this problem by generating a control cell 
at the crossover switch when a new multicast connec- 
tion is admitted. This control cell will act as a refer- 
ence point within the ATM cell stream to faciliatate 
framing at each base station. 

Implementation of our scheme will require minor 
modifications at the switch level. We would require 
the mobile host to maintain some kind of a record 
of the last frame number correctly received from a 
base station. A representative switch fabric that sup- 
ports multicast (broadcast) [21] is shown in Figure 14. 
The modifications proposed to this switch architec- 
ture, however, are general enough to be applied to 
any other existing architecture. Our purpose is only 
to demonstrate how our scheme can be implemented. 
In the original switch architecture, CP is responsible 
for establishing both point-to-point and multicast con- 
nections. CN makes copies of the incoming ATM cells 
while the BGTs fill out the header information for each 
ATM cell generated by the CN (for multicast) as well 
as perform header translation for unicast cells. The 
DN distributes traffic over its outlets as uniformally 

6Note that both BSl and BS2 may not be connected to the 
same ATM switch. In fact the crossover point could require a 
number of hops to be made. 
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tion time (r,„ne/i) required to ensure that duplication 
in receiving ATM cells at the mobile host is limited to 

Figure 12: Possible header of a Control Cell 

as possible. For a comprehensive survey on switch ar- 
chitectures see [23, 22]. 

The modifications required are shown with dashed 
lines in Figure 14. On receiving a multicast join re- 
quest, the CCGL will request the CN to generate an 
empty cell of 48 bytes while the CP is setting up the 
multicast connection. A BGT will then attach the 
header of this control cell and appropriate values of 
Cell Loss Priority (CLP) and Payload type (PT) bits 
will be filled in. Note that the control cell will have 
its CLP bit set to 0 (high priority) and PT bits (bl, 
b2 and b3) may be set such that this control cell is 
distinguished from ordinary data cells. The VPI and 
VCI bits will be identical to their counterparts in the 
data cells. Figure 12 depicts a possible header config- 
uration for a control cell. 

When BS1 receives this control packet, say cp 
(which may be in the midst of regular cells all belong- 
ing to a single frame), it continues its framing process 
as before but sets a special flag in this frame before 
it goes out to the mobile host. The next frame to be 
transmitted will be numbered 1. The special flag that 
was set in the last frame to be transmitted will cause 
the mobile host to reset the frame counter it maintains 
to 0. Note that the mobile host does so only after it 
has received all previous frames from BS1 correctly. 
This will ensure that there is no confusion if requests 
for retransmission are generated by the mobile host 
on account of erroneous transmission from BS1. On 
receipt of cp, BS2 starts framing ATM cells (F cells 
per frame) and also starts numbering them from 1. 

When handoff actually takes place, the mobile host 
will be able to specify the last frame completely re- 
ceived from BS1 (say n) so that BS2 can can send 
the next appropriate frame to the mobile host. If BS2 
starts transmitting from frame n + 1 onwards, it may 
result in one frame being completely duplicated at the 
mobile host in the worst case. The extent of dupli- 
cation depends on the position of cp relative to the 
boundary of a frame being generated at BS1. Note 
that this duplication could be as small as a single 
ATM cell if the wireless protocol adopted transmits 
one ATM cell at a time instead of a larger frame. In 
any event loss of ATM cells will not occur. 

Given below is the expression for the synchoniza- 

at most one frame. 

■L synch     —     tsetup + *-Tmax       Tmfn + T^s2 

+ 
BWWL 

+ TWLL (4) 

where BWWL is the bandwidth of the wireless link, 
and TWLL is the latency of the wireless link. rmar rep- 
resents the upper bound on the time taken for the first 
frame to be reach BS2. An additional (rmar — rmt-n) 
represents the upper bound on the time required to 
flush out the ATM cells which was already received 
by BS1 before cp arrived. The expressions 7^,2 and 
■gw— represent the processing time required for a 
frame at BS2 and the time required to transmit a 
frame over the wireless link respectively. 

Note that this analysis assumes that the delay as- 
sociated with ATM cells reaching 551 is rm,-n, and 
the delay for ATM cells reaching BS2 is rmax. This 
analysis will produce the worst case value of T3ynch- 

The actual stagger time available for this connec- 
tion is now given by 

^stagger — *s       * syn ch (5) 

where, ts is the stagger time determined for a partic- 
ular QOS requirement of the user (see Section 3). 

Note that the synchronization time presented above 
and the chosen buffer size of (rmar - rmin) x BWconn 
at each base station, will together ensure that the 
frame being currently transmitted to the mobile host 
is within the buffer for each base station in the multi- 
cast. 

The scheme presented here may result in the du- 
plication of a single frame of ATM cells as explained 
above. However, this duplication could be as small 
as a single ATM cell if the wireless protocol adopted 
transmits one ATM cell at a time instead of a larger 
frame. It is possible to avoid any duplication if control 
cells can be generated at the source itself. However, 
this may require a change in the existing ATM proto- 
cols. In this paper, we do not consider such a situa- 
tion but it is evident that if such a change is brought 
about in the future, then we will be able to perfectly 
synchronize frame reception at the mobile host. 

5    Conclusion 
There are many user applications that do not re- 

quire a "total" guarantee for disruption free service 
but would also not tolerate very frequent disruptions. 
An user will not not want to pay a high cost for such 
applications. Thus if a multicast based approach is 
used, the data packets will be multicast to the neigh- 
boring wireless cells throughout the connection. This 
will be prohibitively expensive. On the other hand, if 
forwarding is used during handoffs, the user will see 
a break in service during every handoff. With the 
decreasing cell sizes, the user might see a disruption 
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every 5 seconds (in picocellular environments). Pro- 
posed in this paper is a novel staggered multicast ap- 
proach which provides probabilistic guarantee for dis- 
ruption free service. The main advantage of the stag- 
gered multicast approach is that it partially provides 
the benefits of the multicast approach and also pro- 
vides the much required savings in the static network 
bandwidth. 

In summary, the main features of the staggered 
multicast approach are the following: 

• The network bandwidth usage is significantly re- 
duced. 

• A probabilistic guarantee for disruption free ser- 
vice is provided. 

Using the ATM switch modifications as suggested in 
the implementation section of the paper, we can en- 
sure lossless data delivery to the end user. 

We are currently investigating staggered multicast 
schemes where the stagger time is determined dynam- 
ically during the handoff process. We believe that a 
dynamic stagger will more provide a much better per- 
formance than the static stagger scheme proposed in 
this paper. On the other hand, if there are sophisti- 
cated wireless adapters available that can provide an 
intermediate signal level which will notify the mobile 
host that a handoff will soon occur, then the multicast 
initiation could be staggered till this point. 
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Appendix 1 : Two Dimensional Random 
Walk Model 

We will first discuss the one dimensional random 
walk model as explained in [6], and then extend it to 
two dimensions. 

Let the position of the user after t units of time be 
x{t). Let the one dimension be the X axis. In the one 
dimension random walk model, every T units of time, 
the user tosses a coin, and based on the result the user 
either decides to go in the positive X direction or the 
negative X direction. For example, upon a head the 
user decides to take one step in the positive X direc- 
tion, and upon a tail the user decides to take one step 
in the negative X direction. For the purpose of this 
discussion, we will assume that the step size if small 
enough so that a step in any other direction can be 
approximated by one of the four directions mentioned 
here. 

The important parameters in the modelare the 
time interval between two tosses T and the length of 
the step s. It is shown in [6] that for t > T, x{t) is 
normally distributed with zero mean and variance at 
as shown in the following equation. 

Converting into polar coordinates (r, 6) we get, 

,2*    ,fi 
Prob(r(t) <R) = /   /(r, 6, t) J dB dr 

Jo   Jo 

where J is Jacob ian [7], which is given as follows: 

J = 
9{x,y) 
d(r,0) 

Replacing J, we get, 

cosO    —rsinO 
sinö      rcosd 

fR T 
Prob{r(t) < R) =  /    —e-^dr 

Jo   at 

Therefore, 

Prob(r(t)<R)=l-e-&r (7) 

/(*,<) = 

rs:'r m 

y/2Trat 
(6) 

where a = s2/T. It is assumed that the user starts 
from the origin. It is also assumed that the successive 
steps are independent of each other. 

We can extend this analysis to two dimensional ran- 
dom walk model. Let the two dimensions be X and Y. 
Let positive X axis represent the east (E) direction, 
and the positive Y axis represent the north (N) direc- 
tion. In such a model, the user tosses two coins every 
T seconds. Based on the resulting head-tail combi- 
nation the user will decide to take a step in a specific 
direction. For example, a head-head results in the user 
taking a step in the north-east direction, a head-tail 
results in the user taking a step in the north-west di- 
rection, a tail-head results in the user taking a step in 
the south-east direction, and a tail-tail results in the 
user taking a step in the south-west direction. 

We assume that the movement in the X-dimension 
is independent of the movement in the Y-dimension, 
and that the distribution functions are identical for 
both the dimensions. Thus, the joint density of the 
two dimensional random walk will be given as follows: 

!v*"? f(*,y,t) 
2itat 

e     2o,< 

Let us assume circular cells of radius R units. At 
time i, the user will be in the same cell if x(t) < R 
and y(t) < R. Therefore, 

R rR 
Prob(x(t) < R, y(t) < R) =   f    f   /(x, y, t) dx dy 

Jo  Jo 
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Abstract—A new approach for dynamic processor allocation in 
hypercube multicomputers which supports a multi-user environ- 
ment is proposed. A dynamic binary tree is used for processor 
allocation along with an array of free lists. Two algorithms are 
proposed based on this approach, capable of efficiently handling 
cubic as well as noncubic allocation. Time complexities for both 
allocation and deallocation are shown to be polynomial, a signifi- 
cant improvement over the existing exponential and even super- 
exponential algorithms. Unlike existing schemes, the proposed 
strategies are best-fit strategies within their search space. Simu- 
lation results indicate that the proposed strategies outperform the 
existing ones in terms or parameters such as average delay in 
honoring a request, average allocation time, average deallocation 
time, and memory overhead. 

Index Terms—Cubic allocation, deallocation, dynamic binary 
tree, fragmentation, hypercube, noncubic allocation. 

I. INTRODUCTION 

IN an MIMD hypercube supporting multiple users, an incom- 
ing task, is allocated the required number of processors for 

execution. Upon completion of the task, these processors that 
were assigned to the task are released, for subsequent alloca- 
tion; this process is known as "deallocation". Several proces- 
sor allocation schemes have been proposed in the literature 
[I]. [3], [5], [6], [7], [8], [13], [15], [16], [18], [24]. Most of 
these, including nCX, the host operating system of the nCUBE 
series [21], assume the number of processors as a power of 2. 
Many applications, though, do not necessarily require a com- 
plete subcube for execution [14], [23],. [24], such as those re- 
quiring embedding of complete and incomplete binary tree, 
rectangular grid in hypercubes, solving a large number of non- 
linear equations, etc. 

Implementing .a complete subcube allocation strategy has 
the drawback of allocating extra processors to the tasks to ob- 
tain a full subcube. Known as "internal fragmentation," this 
translates to both lower computation power as well as higher 
waiting times for subsequent tasks. Those strategies for non- 
cubic allocation proposed in [15], [16], [24], have extremely 
high time complexities for allocation and deallocation (Table 
II), perhaps unsuitable for high dimensional hypercubes. 

Manuscript received July 9, 1993; revised July 5, 1994. 
D. Das Sharma is with the General Systems Lab, Hewlett-Packard 

Company, Roseville. CA 95747-5596; e-mail: dsharma@hprpcd.rose.hp.com. 
D.K. Pradhan is with the Department of Computer Science, Texas A&M 

University, College Station, TX 77843-3112; e-mail: pradhan@cs.tamu.edu. 
1EEECS Log Number D95040. 

An efficient allocation scheme handles both cubic and 
noncubic allocation while exhibiting low time complexities 
for both allocation and deallocation, low memory overhead, 
high processor utilization, and low waiting times for incom- 
ing tasks. Two such schemes are presented here which pos- 
sess the lowest time complexities and lowest memory over- 
head among existing schemes, while exhibiting superior per- 
formance. 

A dynamic binary tree is used to represent the various sub- 
cubes in the proposed schemes. The dynamic binary tree 
maintains a very compact representation, which results in an 
extremely low memory overhead, shown in Section V. In- 
complete subcubes are maintained explicitly in the dynamic 
binary tree. Representatives of the free incomplete subcubes 
are maintained in the form of an AVL tree associated with the 
highest dimension subcube in the incomplete subcube. Both 
proposed algorithms have polynomial time complexities 
(0(n2) and 0(n3), respectively) for allocation and deallocation- 
orders of magnitude improvement over existing super- 
exponential algorithms, as depicted in Tables I and II. Al- 
though the proposed schemes lack complete subcube recogni- 
tion capability, our incomplete subcube recognition capability 
is better than most of the existing schemes (Table II). 

Simulation results demonstrate that the proposed schemes 
outperform the existing strategies for parameters like average 
waiting delay, variance in waiting delay, and average turn- 
around time for a wide range of workloads and dimensions of 
hypercube systems, while possessing the lowest overheads in 
allocation and deallocation times and amount of memory re- 
quired. This effect is even more prominent as the dimension of 
the hypercube increases. 

The paper is organized as follows: The following section 
presents pertinent preliminaries. A discussion of the existing 
methods is presented in Section III. Our approach is delineated 
in Section IV, including comparison against existing schemes. 
Section V provides simulation results, comparing the perform- 
ance of our strategy against certain existing ones. The conclu- 
sion is contained in Section VI. 

II. PRELIMINARIES 

We consider an n-dimensional hypercube where the indi- 
vidual nodes or subcubes are represented by an n-bit string of 
ternary symbols from Z = {0, \, x], where x denotes a "don't 
care." For example, in a 2-dimensional hypercube Ix denotes 
the nodes 10 and 11, and xx denotes all the four nodes. 

45 



DAS SHARMA AND PRADHAN: PROCESSOR ALLOCATION IN HYPERCUBE MULTICOMPUTERS: FAST AND EFFICIENT STRATEGIES 1109 

('.■ 

■''-: 

DEFINITION l. The Hamming Distance [15] between two sub- 

cubes a = axa2 ... an and b = bxb2 ... bn; where a; e Z and 

b-, e I for all i e [1, «]; can be defined as H(a, b) = 

EiLi/ifa. fr/), where /t(a;, £>,-) = 1 if a, * 6, and a(, fc,- e {0, 1}, 
and 0 otherwise. For example, //(OOx, lxc) = 1 and 
#(Lc0,;c0;c)=:0. 

DEFINITION 2. The Exact Distance [15] between the two sub- 
cubes a and b above, can be defined as E(a, b) = Z"=,e(a;, bj) 
where e{ah £,) = 0 if at = bs and 1 otherwise. For example, 
£(Ocl, lOx) = 3 whereas H(0x\, lOx) = 1. 

DEFINITION 3. An Incomplete Subcube (ISC) S can be defined 
as follows: 

1) It consists of a group of disjoint subcubes {Su S2,..., Sm), 
(1 < m < n), with dimensions du d2, ..., dm, respectively, 
(dl>d2>...>dm)1. 

2) H(Sh Sj) = 1 for all 1 < ij < m , i *j. 
3) E(Sh Sj) = di -dj+l for all 1 < / <j < m. 

dt is the dimension and d = Z^02'/' is the size of the ISC S. 
5, is called the head of the ISC S. 

EXAMPLE 1. The subcubes {\xxx, OOxx, 010*} form a 11-node 
ISC (i.e., size = 11) of dimension 3 and lxcc is the head. 
But subcubes (OOxr, jrlOO} do not form an ISC as the exact 
distance between them is 4 instead of 2 — 1 + 1 = 2; al- 
though the hamming distance is 1. 

Essentially, an ISC consists of subcubes such that the 
hamming distance between any two subcubes is 1 and any 
higher dimensional subcube has xs in the same positions that 
any other lower dimensional subcube has. This ensures that all 
the processors in an ISC lie within the next higher dimensional 
subcube, which minimizes the extent to which tasks can have 
overlapping links. 

DEFINITION 4. A binary representation of a hypercube is a 
dynamic binary tree, where nodes in level i denote a sub- 
cube of dimension n - i. Any node that is allocated to one 
task or a free node does not have any descendants. The bi- 
nary representation of nodes is as shown in Fig. 1. For ex- 
ample, the root node (level 0) represents the entire hyper- 
cube, its left child denotes the subcube Oxxx, right child de- 
notes the subcube lxcc, and so on. Node Ixxx is allocated to 
a task (along with node 0000) and hence does not have any 
descendants. Node Olxc is free, and does not have any de- 
scendants. This helps us maintain a space-efficient represen- 
tation of the hypercube. 

DEFINITION 5. 'A Sibling generated Incomplete SubCube 
(SISC) is an incomplete subcube consisting of the subcubes 
{S\, S2,..., Sm) (1 < m < n), arranged in the decreasing order 
of dimensions, such that the sibling of S; is the common an- 
cestor of all the subcubes [SM, Si+2, ..., 5m}, for all 
/ e [1, m - 1]; in the binary tree representation. The 
dimension of the SISC is the dimension of S| and the total 
number of processors define its size. 

Fig. 1. Dynamic binary tree representation. 

EXAMPLE 2. (Fig. 2) Nodes {lxccccr, OOxuxc, OllOxor, 
0111 lxc, OlllOOx 0111011} form a SISC (say S), as 
Oxcxcxc, the sibling of subcube lxcxcxc, is the ancestor of all 
the lower dimensional subcubes (OOxcxcc, OllOxcc, etc.); 
Olxccxc, the sibling of the node OOxcxcc, is the ancestor of all 
the lower dimensional subcubes (01 lOxcc, Olli lxc, etc.), and 
so on. The dimension of this SISC is 6 and its size is 64 + 32 
+ 8 + 4 + 2+1 = 111. Similarly, nodes {OlOlxcx, OlOOOxc, 
010010*} form a SISC (say 50 in the tree. 

OlOOOx»' 

OIOOIOx        01001Ix 

O1II0I0 0111011 

Fig. 2. Incomplete subcube representation. 

I. For the rest of this paper, it will be assumed that the subcubes are ar- 
rnnfcd in the decreasing order of dimensions, unless otherwise mentioned 46 

THEOREM 1. SISC is an ISC. 

The proof appears in the appendix. 

DEFINITION 6. Maximal Set of Incomplete Subcubes (MSIS) 
is a set of free, disjoint ISCs that is greater than or equal to 
all other sets of free disjoint ISCs of the same set of free 
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nodes. For example, in Fig. 2, ISCs {lxxxxxx, OOxxxxx, 
OlOlxxx, OlOOOxx, OlOOlOx} (size 110) and {OllOxxx, 
Ollllxx, OlllOOx, 0111011} (size 15) do not form an 
MSIS because 5 and S" of the previous example form an 
MSIS with sizes 111 and 14, respectively. 

DEFINITION 7. Physical Fragmentation occurs when a sufficient 
number of free processors can not form an incomplete sub- 
cube of the required size. Fig. 3a illustrates an example where 
the three free nodes do not form an incomplete subcube of 
size 3. Throughout this paper a shaded node will indicate an 
allocated subcube; an unshaded one, a free subcube. The 
physical fragmentation problem is similar to that of memory 
fragmentation and may result from the sequence of incoming 
and outgoing tasks or simply a "bad" allocation (Example 3). 

Fragmentation due to a bad allocation 

(a) 

no 

100 101 

No fragmentation 

(b) 

Fig. 3. Allocation in a 3-dimensional hypercube. 

EXAMPLE 3. Consider the 3-dimensional hypercube shown in 
Fig. 3. If an incoming request requiring 3 nodes is allocated 
{lxl, 011} (Fig: 3a) instead of {lOx, 110} (Fig. 3b), a sub- 
sequent request for a 3-node incomplete subcube cannot be 
allocated. Similarly, if an incoming request of dimension 1 
is allocated the subcube lOx instead of 1x0, a subsequent 
request for a 2-dimensionaI subcube has to wait. 

DEFINITION 8. Virtual Fragmentation occurs when an alloca- 
tion policy fails to recognize an existing incomplete sub- 
cube and causes an incoming task to wait. For example, if 
an allocation policy fails to reconize the 3-node free ISC 
(Oxl, 111) in Fig. 3b, ah incoming request requiring three 
processors has to wait. 

III. EXISTING ALLOCATION SCHEMES 

The existing allocation strategies may be broadly classified 
into two categories. 

• Bit mapping strategies such as Buddy [18], Gray Code 
(GC) [3], [5], Modified Buddy [1], and Tree Collapsing 
(TC) [6]. 

• List type Strategies such as the Maximal Set of Subcubes 
(MSS) [13], Free List (FL) [15], [16], and Prime-Cube 
Graph (PC-Graph) [24]. 

The bit mapping strategies maintain 2" bits, each represent- 
ing the (un)availability of the corresponding processor. These 
bits are searched to determine the availability of a subcube, 
and the first available subcube is allocated. Noncubic alloca- 
tion may be handled by searching for and allocating only the 
required number of processors instead of a subcube. The 
problems associated with these schemes are the physical frag- 
mentation due to their first-fit nature and the virtual fragmen- 
tation due to their incomplete recognition capability (both for 
cubic and noncubic case, as illustrated in Tables I and II). 
These limitations may result in degraded performance in terms 
of the average waiting delay [12]. In addition, the bit-mapping 
strategies have exponential time complexities for allocation 
and deallocation (Tables I and II). Thus, they may not be suit- 
able for processor allocation in hypercubes of large sizes. 

The list type strategies maintain a list, of the free subcubes in 
the system for subcube allocation. They have complete sub- 
cube recognition capability and are best-fit strategies for sub- 
cube allocation. However, some of them do not possess com- 
plete ISC recognition capability (Table II). The use of heuris- 
tics for both allocation and deallocation may potentially cause 
both physical and virtual fragmentation, even for cubic alloca- 
tion, as illustrated in [7], [12]. The problems are worse for 
noncubic allocation. Recognizing ISCs in the list type strate- 
gies is non-trivial, as the relationship among free subcubes in 
the various lists has to be examined. This may involve super- 
exponential time complexity as there can be 0(2") free sub- 
cubes and 0(n) free subcubes of distinct dimensions can form 
an ISC. This time complexity may further increase if we try to 
allocate the "best" ISC in order to reduce physical fragmenta- 
tion and reducing common links between tasks [12]. This is 
probably the reason the list type strategies are first-fit for non- 
cubic allocation (Table II). This results in degraded perform- 
ance, as illustrated in Section V. A detailed comparison of the 
various strategies appears in [12]. 

We define the goal of an allocation algorithm to be able to 
maintain the MSIS after every allocation and deallocation. 
Maintaining the MSIS after every allocation and deallocation 
will involve the undesirable effect of super-exponential time 
complexities due to the inherent nature of the problem. Thus, 
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we use a strategy that recognizes ISCs of type SISC only and 
maintain the MSIS of ISCs of type SISC only. The allocation 
and deallocation time complexities of the proposed strategies 
is polynomial. Because they are best-fit strategies, the pro- 
posed allocation schemes reduce physical fragmentation sig- 
nificantly. They exhaustively coalesce a released subcube if it 
is recognizable by the strategy. In addition, the proposed 
schemes are capable of recognizing the adjacency of up to n 
subcubes in the tree, unlike free list and prime cube; the only 
two noncubic allocation strategies in the literature. We also do 
not incur the penalty of higher job turn-around time due to 
reduced bisection bandwidth or shared links, unlike the prime- 
cube approach [12], as we allocate only ISCs, contained within 
the next higher dimensional subcube, instead of any arbitrary 
noncubic structure. Although the proposed strategies do not 
have complete recognition ability for cubic as well as noncubic 
allocations, simulation results indicate that the strategies ex- 
hibit much better performance than the existing strategies. 
Thus, by limiting our subcube (and hence the ISC) recognition 
capability we obtain polynomial time algorithms whose per- 
formance and even the ISC recognition capability exceed that 
of the existing strategies; as illustrated later. 

IV. THE PROPOSED STRATEGY 

In the proposed strategy, a dynamic binary tree along with 
an array of free lists is used for processor allocation. The 
nodes in the tree represent various subcubes. Free subcubes 
may join to form an ISC of type SISC, as explained in Section 
II. For the rest of this section, "ISC" refers to SISC only and 
"MSIS" refers to MSIS of type SISC only. 

Incomplete subcubes are represented ifi the algorithm by a 
bidirectional link between two adjacent subcubes; the sub- 
cubes being arranged in the decreasing order of their dimen- 
sions. The highest dimensional subcube is the head of the ISC. 
Each free ISC is represented by a separate type of node 
(shown as lightly shaded nodes in Fig. 4) which stores the 
number of processors and the address of the head of the ISC it 

represents. Representatives of all the free ISCs are kept in an 
array of lists called "isc," which has n + \ entries in it. Repre- 
sentatives of all the free ISCs of dimension i are arranged as a 
height-balanced AVL tree [19], the key being the number of 
processors in the ISC each node represents. isc[i] points to the 
root of the AVL tree associated with the ISCs of dimension i. 
The AVL tree is a height-balanced binary tree, where the dif- 
ference of the depths of the right and left subtrees of any node 
is at most one [19]. The AVL tree ensures that search, insert 
and delete operations can be done in 0{log{k)) time [19], 
where k is the number of ISCs of dimension i (k = 0(2""')). 
This, in turn, ensures polynomial time complexities of the pro- 
posed algorithms. 

EXAMPLE 4. The dynamic binary tree represented in Fig. 4 has 
five ISCs. The ISC formed by the nodes {4,10,23,44} has 240 
processors and is of dimension 7. It is the only ISC of dimen- 
sion 7. Hence, isc[7] points to the representative node of the 
ISC (the only node in that AVL tree). The rest of the ISCs in the 
dynamic binary tree are all of dimension 5 with 34, 36, 60, and 
63 processors in them. Thus, the AVL tree associated with the 
dimension 5 has four entries in it, as illustrated in the figure. 
Each representative node contains the number of processors, 
and the address of the head of the ISC it represents (indicated 
by dotted lines in the figure) along with the necessary informa- 
tion to maintain the height balanced AVL tree. The rest of the 
entries in isc are set to NULL 

A. Noncubic Allocation 

In this subsection, we present two algorithms for noncubic 
allocation that work efficiently for cubic allocation as well. 
The algorithms proposed in this subsection will use the data 
structure described above. 

A. I. Algorithm 1 

In this approach, each node (N) in the dynamic binary tree 
maintains a pointer to the head of the largest ISC (denoted as 
"iscptr") beneath N (all the subcubes in this largest ISC are 

48 



1112 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  VOL.6. NO. 10, OCTOBER 1995 

descendants of N) along with the number of processors in the 
ISC (denoted as "iscnodes"). For instance, in Fig. 4, the iscptr 
entry of node 3 will point to node 24, the head of an ISC with 
63 processors. Thus, its iscnodes entry is 63. A node allocated 
to one task, a free node and a nonleaf node, all of whose de- 
scendants are allocated, will have the iscptr set to NULL and 
iscnodes set to 0. 

During allocation, the ISC S, with the minimum number of 
processors that can satisfy the request, is chosen for allocation. 
The representative of this ISC is removed from its correspond- 
ing AVL tree (and hence the isc list). Subcubes of the required 
dimensions are allocated to the incoming task (/,) by using this 
ISC. The free subcubes of 5, that were not used for allocation 
to /;, are released to form one (or two) ISC(s) and added to the 
corresponding isc list(s). It should be noted that every inser- 
tion/deletion of an ISC to/from an isc list (AVL tree) is ac- 
companied by updating the iscptr (and iscnodes) entry of the 
ancestor(s) of the head of the ISC. 

A formal description of the allocation algorithm is de- 
scribed below followed by examples describing the various 
steps of the allocation procedure. In this algorithm 
allocatedlist maintains the list of subcubes to be allocated to 
the task after execution of the algorithm, newlist maintains the 
list of higher dimensional subcubes that are not required for 
the current allocation in progress, brokenlist maintains the list 
of free subcubes generated after allocating subcubes to the 
request /,• by fragmenting a higher dimensional subcube. 

A. La. Allocation 

Step 1. Form the dimensions £>,, D2,..., Dm of the subcubes 
required to satisfy the task /, requesting D processors; arranged 
in the decreasing order. 

Step 2. Search the isc lists from isc[D,] onwards and choose 
the ISC S = {Si, S2l.... S,} with the minimum number of proc- 
essors that can satisfy request l, (let the dimensions of sub- 
cubes in S be du d2, ..., d„ respectively). If no such ISC is 
found, keep the request in the waiting queue and skip the re- 
maining steps. 

[The allocation process tries to allocate the subcubes of di- 
mensions D|, D2 Dm, respectively, (in that order) from the 
free subcubes Su S2, .... S, (in that order). S,- denotes the sub- 
cube in S that is currently being considered for allocating sub- 
cubes of dimensions DJt D^ , Dm.] 

Step 3. / = j = 1. allocatedlist = newlist = brokenlist = 
NULL. (Initialization). 

[d-, is the highest dimension subcube in S that may be allo- 
cated to Ij. Dj is the highest dimension subcube in /, that is be- 
ing considered for allocation. The following steps illustrate the 
various scenarios that may arise based on the relationship be- 
tween di and D,, Dj+],..., Dm.] 

Step 4. If di > Dj and the available subcubes {SM, Si+2,.... S,} 
of 5 can satisfy the request for the subcubes of dimensions D}, 
Dj+[,..., Dm yet to be allocated: 

Remove St from 5 and append it to newlist. i = i + 1. Go To 
Step 4. (Example 5) 

(In this Step, subcube 5, need not be allocated, since the 
lower dimensional subcubes of 5 can satisfy the request.) 

Step 5. If dj = Df {i.e., S-, has to be allocated) 

1) Append S, to allocatedlist after removing it from S 
(Example 5).j=j+l. 

2) If j = m + 1 (all subcubes of the required dimen- 
sions allocated): 
• list = {SM,.... S,} and Go To Step 7. (Step 7 releases 

the free subcubes in list and newlist to the system. 
These subcubes were not used in the allocation proc- 
ess.) 

• Allocate the subcubes in allocatedlist to /,. Skip the 
remaining steps. 

3) If the sibling S,' of 5,- has enough processors in the maxi- 
mal ISC beneath it (denoted as {S,, S\,.... 5;}) to ac- 
commodate subcubes of the remaining dimensions Dy+i, 
Dj+2,.... Dm, do the following: (Example 6) 

(trying to see if ISCs of lower sizes can be used instead of 
the remaining subcubes in 5) 

a) Remove the ISC headed by S, from the isc list and up- 
date its ancestors. 

b) list = [SM, SM,.., S,).S= {<?,, S2,.... S,). i = 1. Go to 
Step 7. (Example 7) 

(Step 7 tries to form maximal ISC(s) out of unused subcubes 
of previous ISC S.) 
Else: i = i+l. 
4) Go to Step 4. 

Step 6. If di > Df. (Now subcube Si has to be used to satisfy 
the remaining subcube requests of dimensions Dj, DJ+I, .... Dm 

by fragmenting 5,- (Example 8).) 

1) Form the two children of 5; in the dynamic binary tree (of 
1 dimension less). 

2) If the dimension of the children = Df. 
a) Allocate the right child to /,• by appending it to 
allocatedlist. 
b) Si = left child of S,. 
c)j=j+l. 

Else: 
[Since the dimension of node S,'s children is greater than Dj 
(the highest dimensional subcube yet to be allocated); one 
of Si's children needs to be further fragmented to allocate a 
subcube of dimension Dj. The right child of S,- would be 
used to allocate the remaining requests and the left child 
would be eventually released.] 

a) Append the left child to brokenlist (to be released 
later). 
b) Si = right child of S; (to be used for allocation). 

3) If j < m Go To Step 6.1. (Continue allocation as more 
subcube(s) are yet to be allocated.) 

4) If the number of processors in brokenlist is greater than 
thatin{5,+,,51+2,...}: 

(The free subcubes remaining after fragmenting the original 
node Si in the ISC S have more processors than the remain- 
ing free subcubes in 5 (i.e., Si+I, Si+2, ..., S,). Hence, broken- 
list is chosen to combine with higher dimensional free sub- 
cubes instead of the remaining free subcubes in S.) 
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A*? 

• Insert {SM, SM, •— St] to the appropriate isc list and 
update the ancestors (i.e., their iscptr and iscnodes en- 
tries) of SM. 

• list = brokenlist (to combine with higher dimensional 
subcubes, if possible). 

Else: 

[Since the number of processors in the ISC S {[SM, S1+2,..., S,}) 
is greater than those in brokenlist, the ISC S is chosen to 
combine with higher dimensional free subcubes, if possible.] 

• Insert brokenlist to the appropriate isc list and update 
the ancestors of the highest dimensional subcube in 
brokenlist. 

• list - {SM, S;+1, ...} (to combine with higher dimen- 
sional subcubes, if possible) 

5) Go to Step 7. 
6) Allocate the subcubes in allocatedlist to the task /,-. Skip 

the remaining steps. 

(Step 7 is used by Steps 5 and 6 only. It forms maximal 
ISCs out of the free subcubes in "list" and "newlisf and 
returns to the point from which it was invoked.) 

Step 7. 

\)lfnewlist is empty: [No more free (higher dimensional) 
subcubes with which the (lower dimensional) subcubes in 
"list" can combine to form a higher dimensional ISC] 

• Insert the subcubes in list to the appropriate isc list. 
• Update the ancestors of its head. 
• RETURN. 

2) Let L be the lowest dimension subcube of newlist and Ls 

be its sibling. 
3) Remove L from newlist. 
4) If the maximal ISC beneath Ls (say /,) has more proces- 

sors than list: 
(In this case, the maximal ISC beneath Ls (i.e., U) should 
combine with L instead of the ISC in list, as that would 
yield a maximal ISC. Hence, /, is removed from the "isc" 
list and combined with L, whereas the ISC in list is added to 
the appropriate "isc" list) 

• Insert the subcubes in list to the appropriate isc list and 
update the ancestors of its head. 

• Remove /, from the isc list and update the ancestors of 
its head. 

• list = [L] append {/,}. 

Else: Add L to the head of list (Example 7). 
5) Go to Step 7.1. 

EXAMPLE 5. Consider the scenario of Fig. 5a. Suppose we 
have a request for 149 processors (dimensions 7, 4, 2, 0) 
(Step 1). The ISC headed by node no. 2 (S = [2, 7, 25, 48, 
99}) is selected from isc[&] as isc[l] is empty (Step 2). The 
subcube no. 2 of dimension 8 in S need not be allocated as 
the rest of the subcubes in S can satisfy the request (Step 4). 
Following Step 5.1, Node 7, however, needs to be allocated 
(kept in allocatedlist) whereas node 2 will be released later 
(goes to newlist). 

EXAMPLE 6. (Continuing from Example 5) The sibling of the 
allocated node 7 (node 6) is checked to see if the maximal 
ISC beneath it (the ISC {55, 109, 217} with 28 processors) 
can satisfy the remaining dimensions 4, 2, and 0. Since, the 
ISC headed by 55 can accommodate the remaining sub- 
cubes, we use that instead of the subcubes {25, 48, 99} in 
an attempt to preserve higher ISCs (Fig. 5b). (Now list = 
{25, 48, 99} and S = {55, 109, 217}. This constitutes Step 
5.3.) However, the choice of ISC {53, 210, 847} would 
have maintained the MSIS after allocation. This drawback 
arises as nodes do not store all the ISCs beneath them to 
make the "best" choice. The second algorithm overcomes 
this shortcoming by maintaining all the ISCs beneath a node 
in the form of an AVL tree instead of maintaining the 
maximal ISC only. 

It should be noted that the maximal ISC beneath the sibling 
of an allocated subcube will have fewer processors than the 
remaining subcubes in S, as the ISC with more processors al- 
ways combines with higher dimensional free subcubes to form 
a larger ISC. 

EXAMPLE 7. (Continued from Example 6) (Fig. 5b) After the 
ISC headed by 55 is chosen for allocation, the free subcubes 
of the current ISC (headed by 2) are to be deallocated. 
These free subcubes belong to two categories: those higher 
dimensional subcubes of S that were not used in allocation 
(kept in newlist during Step 4; here newlist = {2}) and those 
lower dimensional subcubes (stored in list) that were not 
used during allocation either because the allocation process 
was complete (Step 5.2) or because a smaller ISC was 
available (Step 5.3) (here list = {25, 48, 99}). After remov- 
ing the ISC headed by 55 from isc[4], the sibling of node 2 
(which is the lowest dimension subcube in newlist) is 
checked for its maximal ISC. In this case, the current ISC 
(list) has more numbers of processors than the maximal ISC 
beneath 3 (headed by 53 with 21 processors). Thus, we add 
node 2 to the remaining free subcubes of the current ISC 
and add {2, 25, 48, 99} in the free list of isc[&] and update 
the ancestors of 2 (Step 7 followed by Step 5.3). If the ISC 
headed by 53 had more processors than list, it would have 
been removed from its isc list and combined with node 2 to 
form a new ISC and list would have been added to the cor- 
responding isc list (part of Step 7.4). 

EXAMPLE 8. (Continued from Example 7) The ISC 5 = 
{55, 109, 217} is now used to allocate the remaining sub- 
cubes of dimensions 4, 2, and 0 to /;. Node 55 of dimension 
4 will be allocated (Fig. 5c). Node 109 of dimension 3 
needs to be fragmented (Step 6) to allocate the remaining 5 
processors to /; (Fig. 5d). Nodes 219 and 875 generated 
from node 109 are allocated to /;, whereas the unused nodes 
436 and 874 need to be released and are stored in brokenlist 
(brokenlist = {436, 874}). Since the unallocated node 217 
from 5 has more processors than brokenlist (Step 6.4), the 
latter simply joins isc [1] whereas the former is chosen to 
combine with higher dimensional subcubes, if possible 
(Step 7). However, in this case, node 217 does not have 
enough processors to join node 2 and is kept in isc{2]. 
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Fig. 5. Allocating an ISC of size 149 in a 9D hypercube. 

m 
A.l.b. Deallocation 

During the deallocation process, the proposed strategy tries 
to combine the released subcubes with the existing free sub- 
cubes to form the MSIS. Theorem 2 proves that the dealloca- 
tion procedure always maintains the MSIS (though the same 
can not be said about the allocation process). The deallocation 
process consists of two phases. In the first phase, free sibling 
subcubes are combined and the parent is marked free. This 
process continues until the sibling of the free subcube is not 
free or the entire hypercube is found to be free (Example 9). In 
the second phase, free subcubes of different dimensions are 
grouped to identify free ISCs in the system. A formal descrip- 
tion of the algorithm is described below followed by examples. 

» 
Step 1. Let L = {£,, S2, .... Sm] be the subcubes of the ISC 

(to be deallocated) arranged in the increasing order of their 
dimensions du d2,..., dm, respectively. 

(Steps 2-4 try to combine free sibling nodes to form higher 
dimensional free subcubes as much as possible.) 

Step 2. i = 1. Remove St from L. 

Step 3. If the sibling Sf of S,- is free: 
(i.e., Sf has no subcubes beneath it in its ISC now as S,- is being 
released as a free node (and hence can not have any free de- 
scendant nodes with whomi Sf can combine to form an ISC).) 

• If Sf is the head of the ISC: Remove the ISC from the isc 
list and update the ancestors of Sf. 

• Combine the two siblings Sf and S,- by removing them 
from the dynamic binary tree and mark their parent as S,-. 
Go To Step 3. 

Step 4. If Sf = S,+i (i.e., the sibling is itself among the re- 
leased subcubes.) 

• Remove SM from L. Eliminate S-, and SM from the tree 
and mark their parent as SM. 

• i = i+ 1. Go To Step 3. 
(Combining free sibling nodes to form the free parent node 

ends here. Now we have to form maximal ISCs out of the re- 
leased subcubes by traversing up the tree. We start to form the 
ISC(s) by starting from the lower dimensional subcubes. S, is 
the lowest dimensional free subcube. S denotes the ancestor of 
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Si whose sibling S* is examined to form the maximal ISCs.) 
Step 5. If Si is the root of the dynamic binary tree (i.e., the 

entire hypercube is free): insert 5,- in wc[CUBESIZE] and skip 
the remaining steps. 

Step 6. S = Sh Sf = Sibling of S,: If = maximal ISC under 
Si'.list={Si).L = L-[S). 

(Si being the lowest dimensional free subcube in L, If de- 
notes a lower dimensional ISC that can be readily appended 
to L to form a higher ISC. "list" maintains the free subcubes 
that will form an ISC.) 

Step 7. S = Parent of S. If S is not root of the tree: 5* = Sib- 
ling of S. 

Step 8. If S is the root of the dynamic binary tree: (search over) 

1) If // is not NULL: Remove If from the corresponding 
isc list; Update ancestors of the head of I' and append 
I' to list. 

2) Insert list in the appropriate isc list and update the ances- 
tors of its head. 

3) Skip the remaining steps. 
(Step 9 tries to combine the sibling S' of the ancestor S of 

the released subcube £,.) 
Step 9. If S1 is free, do the following steps: 

1) If 5" has more processors beneath it in its ISC than those 
in list and // combined (i.e., it will yield an ISC of higher 
size if we choose the ISC to which S' belongs; instead of 
the current list): 

• If I' is not NULL remove the ISC // from the isc list 
and update the ancestors of its head. Append // to list. 
Ii' = HULL. 

• Insert the ISC formed by list in the appropriate isc list 
and update the ancestors of the head of list. 

• If L is empty skip the remaining steps. (No higher 
ISCs possible.) 

• If 5^ is the head of an ISC: Remove the ISC headed by 
S1 from the isc list and update the ancestors of S* and 
name them as list. Else: Remove the subcubes from S* 
onwards from the ISC and name them as list. 

• S — S1. list = S" append list. 

Go To Step 7. 
2) (S* has fewer processors beneath it than list and I'. 

Hence, the ISC to which S1 belongs is altered. The sub- 
cubes of dimensions lower than S1 are discarded and sub- 
cubes in list is combined with S1 instead. The discarded 
subcubes form a separate ISC.) 
• If S1 is head of an ISC: Remove the ISC from the cor- 

responding isc list and update the ancestors of S*. 
• Remove the subcubes beneath S* in the ISC and form a 

new ISC (call it N). 
• If the subcubes in N are descendants of Sf and S: e list: 

Append N to list. If = NULL.      , 

Else If I,1 is not NULL: 

• Remove // from the isc list and update the ances- 
tors of its head. 

• Append // to list. Set I' = NULL. 
• Insert N to the appropriate isc. Update ancestors of 

its head. 

• list = S" append list. Go To Step 7. 
Step 10. If S1 = Si+l: Remove SM from L; Add SM to the 

head of list, i = i + 1 and Go To Step 7. (The sibling node S" 
turned out to be a higher dimensional released subcube.) 

(Since S* is not free we check if any of its highest descen- 
dant ISC (iscptr), if any, has more processors than what we 
have accumulated so far from the released nodes. If so, this 
ISC will combine with the higher dimensional released node to 
form a higher ISC.) 

Step 11. If S1 is not free (partially allocated) and has more 
processors in the maximal ISC beneath it than those in list 
and If combined do the following steps. (Since the maximal 
ISC beneath S1 has more processors than our current list we 
choose the former to combine with higher dimensional sub- 
cubes.) 

1) If // is not NULL: Remove /* from the corresponding isc 
list and update the ancestors of its head. Append // to list. 

2) Insert the ISC list in the appropriate isc list. Update the 
ancestors of its head. 

3) If S - NULL: Skip the remaining steps. 
4) Remove the highest ISC beneath 5" from the isc list; up- 

date its ancestors, list = this new ISC. 

Step 12. Go to Step 7. 
The following examples illustrate the deallocation proce- 

dure. More detailed examples of this procedure appear in [12]. 
The deallocated nodes are indicated in the figures by an un- 
shaded circle that is crossed. The newly formed ISC is indi- 
cated by solid dotted bidirectional arrows whereas subcubes 
yet to be considered for deallocation are connected by a solid 
bidirectional arrow. 

EXAMPLE 9. Let us consider the ISC L- {2, 12, 208, 418, 
1,672} that is being released (Fig. 6a). The first phase tries to 
collapse the tree by removing free siblings. We start with 
node 1,672 (Step 2) which combines with 1,673. The two 
nodes are removed from the tree and their parent node 836 is 
marked free (Step 3), which combines with node 837, making 
their parent 418 free. Node 418 combines with a released 
node 419 (removed from L); their parent 209 becomes free 
(Step 4). Node 209 combines with its sibling 208, another re- 
leased node, and their parent (node 104) is marked free. The 
procedure terminates at node 52 since its sibling (node 53) is 
not free. All the descendants of node 52 were continuously 
removed at each step of this collapsing phase. 

It should be noted that in the deallocation process, the entry 
for the free ISC with whom the released subcubes interact, is 
not changed, until the head of the ISC is involved. The deallo- 
cation process is guaranteed to continue till the head of the 
ISC once any of its members are changed in the deallocation 
process (Step 9.2). This helps us maintain a low time overhead 
by updating the isc entry and ancestors of the head of each 
affected ISC exactly once. 

EXAMPLE 10. (Continued from Example 9.) After the first 
phase, we have the scenario of Fig. 6b. Now L = (2, 12), 
'list = (52), // = NULL (Step 6). The free nodes will now be 
combined to form ISC(s). Node 52 combines with node 27 
(list = {27, 52), Fig. 6c). This process continues to include 
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node 12 (Fig. 6d) and node 7 (Fig. 6e). The inclusion of 
node 7 indicates that the entry for the old ISC it was head- 
ing has to be removed from isc[$] (Fig. 6e) and all the an- 
cestors of node 7 have to be updated. The new ISC (list) is 
{7, 12, 27, 52}. The inclusion of all these nodes was due to 
the repeated execution of Step 9.2. The search process ter- 
minates after including node 2 to form the ISC (Step 10) 
and inserting an entry for 992 processors for the newly 
formed ISC {2,7, 12, 27, 52} in isc[9] (Step 8.2), as shown 
in Fig. 6f. 

EXAMPLE 11. Let us consider the deallocation of the ISC 
L = {3, 9} in Fig.7a. Here, S,- = 9, Sf = 8, list = {9}, and 
// = (33, 65}. No tree collapsing takes place here since 
node 8 is not free. In the process of ISC,formation, node 9 
combines with 5 along with the other smaller subcubes in 
the ISC it heads (Fig. 7b), there by ignoring our initial 
choice of/' (Step 9.1). At the end of the deallocation phase, 
we have the ISCs shown in Fig. 7c. 

A.2. Algorithm 2 

The allocation strategy proposed in Algorithm 1 does not 

maintain the MSIS after every allocation, as 'illustrated in Ex- 
ample 6. This problem is eliminated in Algorithm 2. In this 
approach, each node maintains a list of all ISCs the beneath it 
in the form of an AVL tree, the key being the number of proc- 
essors in the corresponding ISCs. The AVL tree helps to 
maintain the polynomial time complexities. Updating the an- 
cestors will involve updating the AVL trees associated with 
them. The deallocation and allocation procedures remain basi- 
cally the same as in Algorithm 1 with the following modifica- 
tion to the allocation procedure in Step 5.3. 

Step 5.3. a) Remove the minimal ISC {s,,S2, •••$} be- 

neath Sl (found by searching the AVL tree associated with 5,) 

from the corresponding isc list. Update all the ancestors of St. 

The proposed noncubic algorithms perform extremely well 
for. cubic allocation too. This has been confirmed by the simu- 
lation results presented in the next section. Although the ob- 
jectives of maintaining MSIS and MSS [13] may seem to be 
contradictory in many cases; maintaining the MSIS often acts 
as a "good" look-ahead allocation scheme for cubic allocation 
and outperforms the MSS-based strategies [12]. 
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Fig. 7. Deallocation in a 10D hypereube. 

TABLE I 
ANALYSIS OF VARIOUS CUBIC ALLOCATION STRATEGIES 

Strategy No Cubes Allocation Deallocation Memory Type 

Buddy z-'-i 0(n) 0(n) 9(2") first-fit 

Gray 3.2" - 3 0(2") 6(2*) 6(2") first-fit 

M. Gray 3" 
°tej-2") «far2") etej-2") 

first-fit 

TC 3" °fcr2") Oi.2") 6(2") first-fit 

Mod. Buddy n.2"+l 0(n.T) 6(2») 6(2") first-fit 

MSS 3" o(?) 0(/t2") 0^3*") best-fit 

PC Graph 3" Ofn^5") 0(nrl.-i1") 0(n-'3^) best-fit 

Free List 3" 0(nz) Oinh2"^) 0(n2") best-fit 

Tree List 3.2" - 3 0{n) 0{n) 0(2") best-fit 

Proposed-1 2"*' - 1 0(n2) Oin1) 0(2") best-fit 

B. Analysis of the Proposed Strategies 

The allocation and deallocation time complexities of Al- 
gorithm 1 are 0(n2) each and that for Algorithm 2 are 0(n3) 
each. The space complexity of Algorithm 1 is f2(«) and 
0(2") and Algorithm 2 is Q(n) and 0(/z2"). The O, 0, Q no- 
tations used here are the same as in [19]. The time com- 
plexities of allocation and deallocation along with the space 
complexity of our algorithm is compared with the existing 
algorithms in Table I. Depth indicates the number of adja- 
cent subcubes that can form an ISC. The time complexity to 
search for an element, insert (or delete) an element in an 
AVL tree (be it one of isc lists, or the AVL list associated 
with each node to denote ISCs beneath it as in Algorithm 2) 
is 0(logN) where N is the number of elements in the AVL 
tree [19], [17]. In an isc list of dimension k (or the AVL tree 
associated with a node of dimension k) there can be 0(2" ) 
elements and hence any of these operations require 0(n - k) 
or 0(n) time. An outline of the derivation follows; detailed 
derivation appears in [12]. 

The allocation time complexities of 0(n2) and 0(/i3) in Al- 
gorithms 1 and 2, respectively, can be obtained as follows. 

Steps 1 and 2 require 0(h) time each. Step 3 requires 6(1) 
time. Step 4 requires 0(h) time due to 0(h) possible iterations. 
Steps 5 and 7, each contribute 0(n2) time for Algorithm 1 and 
0(nz) time for Algorithm 2. Step 6 requires 0(h) time for Al- 
gorithm 1 and 0(n2) time for Algorithm 2. The deallocation 
time complexities can be derived as 0(n2) for Algorithm 1 and 
0(r?) for Algorithm 2 from Step 8 which requires 0(h) time 
for Algorithm 1 and 0(n2) time for Algorithm 2, with 0(h) 
possible iterations of Step 8. All the other steps contribute to 
lower time overheads. 

The space complexity can be derived by recognizing that 
the dynamic binary tree may (in the worst case) have 2"* -1 
nodes. The space overhead of Algorithm 1 is 0(2") since each 
node has a constant overhead. Algorithm 2 requires nodes to 
maintain AVL tree of all free ISCs. Since there are less than 2" 
free ISCs and each ISC can contribute only one entry to the 
AVL tree of each of its ancestors, the space overhead of Al- 
gorithm 2 is 0(n.2n). 

The following theorems delineate some of the properties of 
the proposed strategies. Proofs of these theorems appear in the 
appendix. 
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THEOREM 2. Algorithm I maintains the MSIS of type SISC 
after every deallocation. 

THEOREM 3. Algorithm 2 maintains the MSIS (of type SISQ 
after every allocation. 

THEOREM 4. Algorithm 2 maintains the MSIS (of type SISQ 
after every deallocation. 

THEOREM 5. Algorithm 2 maintains the MSIS (of type SISQ 
all the time. 

THEOREM 6. The number of ISCs recognizable by both the 
proposed algorithms is 2.4". 

V. SIMULATION RESULTS 
AND PERFORMANCE ANALYSIS 

The performance of the two proposed strategies is compared 
to that of free-list2 and the modified buddy strategy. Simulation 
results obtained in [6] and [24] suggest that multiple gray code, 
tree collapsing, prime cube graph and free list exhibit similar 
performance for cubic allocation. Moreover, for noncubic allo- 
cation, the free-list strategy recognizes the same number of ISCs 
as the PC-Graph strategy if the search depth is 2 and possesses 
complete ISC recognition capability for depth n (Table II). 
Therefore, the free list strategy appears to be a typical represen- 
tative of a number of allocation strategies. We use both the 
depths of 2 and n for simulating the performance separately. 
However, we present the results of depth n only as it possesses a 
lower waiting time than depth 2 (up to 25% less). Because it is a 
bit-mapping strategy, the modified buddy is also compared with 
the proposed strategies. Simulation results demonstrate that our 
schemes outperform the other two strategies. 

The simulator is written in C and is run on a DEC-Station 
5000. The actual CPU time required for each allocation and 
deallocation is measured in seconds and the system clock is 
advanced accordingly. The simulation is event-driven, the 
events being allocation and deallocation of tasks. The parame- 
ters of interest are: 

1) the average waiting time of a job before it is assigned the 
required number of processors to execute, 

2) the average time required for performing an allocation, 
3) the average time required for performing a dealloca- 

tion, and 
4) the amount of memory required. 

The following assumptions are made: 

• Interarrival time between tasks: exponential. 
• Task service time: exponential and hyper-exponential. 
• Scheduling of tasks: FCFS. 
• ISC (Subcube) size requested by a task: uniform. 

Our interest is primarily in the steady-state behavior of the 
system under different allocation strategies. Each run of the 
simulation performed at least 500,000 allocations and 500,000 
deallocations. 

One set of simulations was performed by changing the di- 
mension of the hypercube for the set of parameters given in 

Table III. It can be seen that the proposed strategies perform the 
best in terms of the average waiting time of a job (Fig. 8). The 
modified buddy strategy performs poorly even for low dimen- 
sions of the hypercube, presumably due to its first-fit nature and 
its poor ISC recognition capability. The free list strategy does 
not perform well when the search depth is 2. However, for the 
depth of n, the free list strategy is comparable to the proposed 
strategies for low dimensions. However, as the dimension of the 
hypercube increases, the performance of the free list with depth 
n starts degrading to the extent that it has a delay of about 4.5 
times more than that of modified buddy and about seven times 
worse than the proposed strategies for a 16-dimensional hyper- 
cube. This can be attributed to the heuristics used in deallocation 
which do not perform well when the dimension increases and to 
the associated time overheads in allocation and deallocation. The 
variance of the modified buddy scheme is much higher than the 
proposed strategies (Fig. 9). The variance of FL is comparable 
for low dimensions, but for high dimensions it performs poorly 
with variance being approximately 100 times worse than ours for 
a 16D hypercube. This suggests a higher predictability in waiting 
times in addition to the lower waiting times for our strategies 
when compared to the other strategies. 

A second set of simulations were performed assuming two- 
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TABLE II 
ANALYSIS OF VARIOUS NONCUBIC ALLOCATION STRATEGIES 

Strategy Depth NoISCs Allocation Deallocation Memory Type 

Buddy n (n-2).2""' +3 0(2") 0(2") G(2") first-fit 

Gray n n.2"'-3.2" +1 0(2") 0(2") 6(20 first-fit 

M.Gray n 3" -t-22- 

-5.2*-'-l °fc]-2") 0(<tir2") efej2") 
first-fit 

Mod. 

Buddy 

n ntr _ 2»+i + j 

°te]-2") 0(2") 6(2^ first-fit 

TC n . 3" +17" 
-5.2"-'-l 

°tej-2") 
(XX) 6(2-) first-fit 

PC Graph 2 n.2*-l-n.T 

-(n-l).3"+3n 

0(n23h 0(fi*3*) CKn-^1*) first-fit 

Free List 
(Depth 2) 

2 n.2M-n.T 

-(n-l).3"+3rt 

0{n37") <Xj?2P) 0(*-2") first-fit 

Free List 
(Depth n) 

n 0((n\)2) c(n-.2"' 

+ n\22") 

O&ib2") CKn.2") first-fit 

Proposed-1 n 2.4" Oin5) CKn2) 0(2") best-fit 

Proposed-2 n 2.4" CKX)      . Oin*).   .. 0(n.2") optimal 

TABLE III 
PARAMETERS USED IN SOME SIMLUATIONS 

Interarrival time of tasks Service Time of Tasks ISC Size Distribution 

Exponential Exponential Uniform 

Mean = 11 sees Mean= 10 sees — 

phase hyper-exponential distribution [22] of job residence times. 
The two phase hyperexponential distribution consists of two 
exponential distributions where the residence time is generated 

3 from the first exponential distribution (mean fi{) with a prob- 

ability p and from the second distribution (mean /z2) with a prob- 

ability 1 —p. For our simulations, we have assumed JJ-i=lQ sees, 

H2 = 90 sees, p = 0.9. Fig. 12 presents the relative average wait- 
ing delay as a function of dimension for an utilization of 0.4. The 
utilization of the system can be derived as " = ^. where n 

represents the average number of processors demanded by a 

task, p. represents the average job residence time, A represents 
the job arrival rate (inverse of inter-arrival time). The proposed 
strategy outperforms the other strategies due to our good ISC 
recognition capability combined with the best-fit nature of our 
scheme, as described earlier. 

A third set of simulations were performed by changing the 
rates of arrival for a 12D hypercube while keeping the other 
parameters the same as the first set of simulations. Results for 
various dimensions indicate that our strategy outperforms the 
other two under all traffic conditions due, to the reasons men- 
tioned above. Fig. 10 shows the response of average delay for 
various arrival rates for a 12D hypercube. The trends were 
similar for hypercubes of other dimensions and for the pseudo- 
normal distribution of task sizes as well. (The pseudo-normal 
distribution a triangle distribution, mimicing a normal distri- 
bution [8], [12].) 

A fourth set of simulations were run assuming a job-mix of 
both cubic and noncubic requests. The probability of having a 
cubic request was varied for a 12-dimensional hypercube 
(since the FL exhibits poor performance for higher dimen- 
sions). The parameters for the arrival and job residence times 
are the same as in Table III. The average waiting delays are 
shown in Fig. 11. It can be observed that our scheme outper- 
forms the FL strategy. However, the difference in performance 
diminishes as the number of (exclusively) cubic requests in- 
creases. This confirms the earlier observations [6], [7], [20] 
that all the allocation strategies behave the same for cubic al- 
location. However, our simulations indicate that when noncu- 
bic requests are involved, an efficient allocation strategy may 
significantly improve the performance in hypercubes. 

In all the four sets of simulations our strategy had the least 
execution times for both allocation and deallocation. Fig. 13 
presents results for the first simulation set The free list performs 
the worst, which is understandable, given the time complexities 
in Table II. (It should be noted that the goal of the free list strat- 
egy was to provide a strategy with complete recognition and 
best-fit search capability for cubic allocation, at the expense of 
high time and space overheads.) The modified buddy also has a 
higher average allocation and deallocation time than the pro- 
posed strategies, as expected. The free list had a large average 
deallocation time (e.g., more than 2,000 times than ours for a 16- 
dimensional hypercube). The allocation and deallocation times 
for both the proposed strategies are almost identical. 
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In all the four sets of simulations both our strategies per- 
formed identical with respect to delays and the (de)allocation 
times. The difference in time complexities arises because the 
second algorithm keeps track of all the ISCs beneath a node 
whereas the first algorithm just keeps the maximal ISC. Pos- 
sibly, for the sizes of hypercubes we have considered, not 
many nodes in the dynamic binary tree have many ISCs be- 
neath them to make an impact in the performance and alloca- 
tion/deallocation time. It may be possible that if we further 
increase the dimension of the hypercube we may see some 
difference in their performance under high arrival rates. 

The maximum amount of memory required by the various 
strategies were also measured for the various simulations per- 
formed. (The memory requirements was measured by keeping 
track of the number of "malloc's and "fre'e's performed and 
adding that to the fixed memory used by the strategy.) Figs. 14 
and 15 represent the memory requirements for the various 
strategies assuming the same set of parameters given in Table 
III. For low dimensions (Fig. 14), the modified buddy has the 
lowest memory requirement as the overhead of maintaining the 

free lists in terms of pointers and other information per node in 
the dynamic binary tree dominates. However, as the dimension 
of the hypercube increases, our strategy has the least memory 
requirement, as the dynamic binary tree saves us the space by 
pruning the nodes that are not needed. The Free-list has the 
worst memory requirement as it needs to form all possible 
subcubes from a released subcube. This scenario does not 
change even under extremely high traffic rates (Fig. 15). 

From the simulations it can be said that our strategy per- 
forms the best in terms of all the four parameters of interest 
for both cubic and noncubic requests. Although all the 
strategies result in the same average waiting delay for (only) 
cubic requests, as reported in earlier studies [20]. [23], the 
average waiting delay improves significantly in the presence 
of noncubic requests. For noncubic allocation, an efficient 
processor allocation scheme may reduce the waiting delays 
significantly, unlike cubic allocation. This is similar to the 
submesh allocation problem in meshes [9]. It can be attrib- 
uted to the fact that in noncubic allocation, there can be re- 
quests for 2" sizes and the nature of the allocation policy 

57 



DAS SHARMA AND PRADHAN: PROCESSOR ALLOCATION IN HYPERCUBE MULTICOMPUTERS: FAST AND EFFICIENT STRATEGIES 1121 

may have a great impact on subsequent requests; unlike the 
cubic allocation where the nature of the allocation policy 
does not have a considerable impact on subsequent requests 
because of the limited number (n + 1) of requests possible. 
Though our ISC recognition capability could be better, the 
low time complexities and our capability to effectively 
maintain the MSIS of ISCs of type SISC after every alloca- 
tion and deallocation along with our lower memory require- 
ment for high dimensions makes it extremely effective. This 
effect becomes more prominent as the dimension of the hy- 
percube increases. Further performance improvements may 
be possible by using an efficient job scheduler along with the 
proposed processor allocator, as demonstrated for cubic re- 
quests in hypercubes [20] and in meshes [10] or by using a 
time-sharing strategy [11]. 

percube systems and is targeting for 65,536 node hypercube 
systems for tera-flops performance [21]. As these sizes grow, 
it will become virtually impossible to use near optimal al- 
gorithms with exponential and super-exponential time com- 
plexities, given limitations on processor speed imposed by 
the technology. 

Implementing relatively efficient allocation and deallocation 
algorithms with very low time and space complexities becomes 
desirable so host computers do not perform only allocations and 
deallocations. This will ensure lower turn-around times for indi- 
vidual tasks, as well. The proposed scheme is, indeed, a practical 
solution with its polynomial time overheads for both allocation 
and deallocation, its a low memory overhead and its lowest av- 
erage waiting times for jobs among all existing strategies. 

VI. CONCLUSIONS 
APPENDIX 

fB 

i 

-'„« 

Sizes of manufactured hypercubes are increasing, ex- 
pected to continue so as demand for parallel computation 
increases. Currently, nCUBE manufactures 8,192 node hy- 
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THEOREM 1. SISC is an ISC. 

PROOF. From definition 5, if 5= [St, S2 Sm) is a SISC, the 
sibling of S; is the common ancestor of {SM, .... Sm}. Hence 
all the subcubes in {Si+l, Si+2, .... Sm] are at Hamming dis- 
tance 1 from Si with exact distance between S-, and Sj as 
d-, - dj+ 1 (J > i). This is because, since all the subcubes are 
represented in the binary tree their xs appear to the extreme 
right and the Hamming distance between any node and its 
sibling (or the sibling's descendants) is 1. Thus any two 
subcubes in S will meet the Hamming distance and exact 
distance criteria mentioned in Definition 3. 

THEOREM 2. Algorithm 1 maintains the MSIS of type SISC 
after every deallocation. 

PROOF. Suppose during deallocation there is a subcube headed 
by S' that could not be combined with the higher_dimen- 
sional subcube S (and is a descendant of the sibling S of 5), 
but is of higher size than what S is combined with to form 
an ISC. This is not possible given that while combining S 
with lower dimensional subcubes we check for the highest 
ISC beneath 5 to combine with_S. Hence if S" is the highest 
incomplete subcube beneath S it would have combined 
with 5. Thus the algorithm maintains the MSIS (of type 
SISC) after every deallocation. 

THEOREM 3. Algorithm 2 maintains the MSIS (of type SISQ 
after every allocation. 

PROOF. Suppose the Algorithm 2 chooses an ISC S = 
[Si, S2, -, Sit SM,.... Sm) whereas an ISC S" = [Su S2,..., Sit 

S'i+i, ..., S'p] with fewer nodes could satisfy the request. 
(5 and S" match in the first i subcubes (i > 0)). Say i = 0. So 
Algorithm 2 has chosen an ISC from the isc list that is not 
the least sized ISC to satisfy the request. This contradicts 
Step 2 of the algorithm. Thus it is not possible. Say / > 0, 
i.e., the algorithm chose the same ISC as what the optimal 
would have but after allocating i subcubes the proposed al- 
gorithm failed to recognize the presence of {S'i+U S'i+i,.... S'p] 
as the minimal ISC beneath the sibling of 5; that could sat- 
isfy the remaining number of nodes required. This is also 
impossible as we maintain all ISCs beneath a node in the 
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form of an AVL tree and search for the minimal ISC be- 
neath the sibling of every allocated node (Step 5.3.a). Hence 
such a scenario is impossible to arise. Thus the strategy 
maintains the MSIS after every allocation. 

THEOREM 4. Algorithm 2 maintains the MSIS (of type SISQ 
after every deallocation. 

PROOF. The proof of this will be exactly the same as Theo- 
rem 2 as the algorithm is also capable of recognizing the 
maximal ISC beneath it in every step of deallocation like 
Algorithm 1. 

THEOREM 5. Algorithm 2 maintains the MSIS (of type SISQ 
all the time. 

PROOF. Since we start with the entire hypercube (which is an 
MSIS) and maintain the MSIS after every allocation and 
deallocation (previous two theorems), the MSIS is always 
maintained. 

THEOREM 6. The number of ISCs recognizable by both the 
proposed algorithms is 2.4". 

PROOF. Since the proposed algorithms recognize all SISCs we 
have to find the number of SISCs in an n-dimensional hy- 
percube. Say T(k) represents the number of ISCs with a 
particular it-dimensional subcube as its head. A k- 
dimensional subcube can combine with all the ISCs beneath 
its sibling (including no ISC—in which case we have just a 
subcube). Thus, T(k) = 2.T(k - 1) + 22.T(k - 2) + ... + 
2'.T(k - 0 + ... + 2* + 1 as there can be two k - 1 dimen- 
sional subcubes with whom the ^-dimensional subcube can 
combine, 4, k - 2 dimensional subcubes with whom the 
^-dimensional subcube can combine and so on. The 1 repre- 
sents the case when no other subcube combine with the 
^-dimensional subcube. Expanding T(k) we can see that 
T(k) = 4.T(k - 1) with the boundary condition that 7(0) = 2 
(1 for including the node and 1 for not including). The 
number of ISCs in an n dimensional hypercube is T(n) 
where the last term 1 would indicate a full hypercube in- 
stead of the NULL set. Thus, T(n) = 2.4". 
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Abstract - The problem of developing software for critical systems in the decision sup- 
port context is considered. The limitations of existing software development methodologies 
are'mentioned and a new methodology, cooperating diverse experts (CDE), is proposed. 
This new methodology draws upon techniques used in multiple version software and in dis- 
tributed recovery blocks. The methodology relies upon the ultrareliable development of a 
parameterizable arbitrator to administer the cooperation of multiple diverse implementa- 
tions (interpretations) of the decision support problem. CDE may be used to develop a 
single reliable software module or it may be used as an operational system in which some 
modules are multiply implemented. 

I. INTRODUCTION 

The lack of reliable software for critical systems has haunted aerospace for decades: the 
launch failure of the Mariner I in 1962, fly-by-wire aircraft, the NASA space shuttle, and 
the NASA Magellan spacecraft. A variety of approaches have been espoused over the last 
two decades to address the problem [25]. Much study has been directed toward the ultimate 
goal of automatic code generation [5, 21]. Figure 1 illustrates the principle. 

Natural Language Specification 

     weakness 

Formal Language Specification 

U 
automation 

code 

Figure 1: Automatic code generation 

1 Research reported supported in part by AFOSR F49620-94-1-0276 and RADC F30602-94-C-013. 
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*-     • Any programming project must commence from some natural language specification (or 
understanding) of the problem. This methodology entails adopting, essentially, a very high 

( level (formal) language. The automatic code generation ensures that if the specification in 
'" the formal language is correct then the resultant code is correct. The difficulty is that the 

t-,,., use of the formal language involves one or more of the following problems: 
I; - 

Lv 1. The code generation is not entirely automatic, invalidating the assurance of correct 
code. 

r ' 2. The formal specification language covers only a narrow aspect of application domains 
(so most of the specification will be written in an error-prone high level language). 

t; 3. The formal specification language is considerably abstract and complex; this leads to 
(|"j human error in translating from the natural language specification to the formal speci- 

fication. 

n"i 4. The formal language does not capture certain requirements, for example the timeliness 
of the outputs. (For our purposes, let us define the requirements to be anything not 
captured by the formal specification.)  Once the generated code is modified to satisfy 

te the requirements, the guarantees of the automatic code generation are lost. 

To address these problems, an opposite approach may be used. This allows the code to 
ffe be freely modified. The code is validated by an automated tool that shows whether the code 

matches an independently developed formal specification.   Figure 2 diagrams the method. 
Essentially, the tools derive condition tables from the code, which are then compared to the 
condition tables of the specification. 

verified if equal 

Figure 2: Enhanced Condition Tables (ECT) 

Two representative examples of the approach are described in [1, 7]. Both use condition 
tables [6] as the formal specification language. More labor in development is needed than with 
automatic code generation. The assurance of correctness for this approach is directly related 
to the degree of independence of code development from condition table development. To 
the extent that there is an implication in the development process, from the formal language 
specification to the code, the testament to the code's validity is weakened. 

SoHaR has developed a toolset that consists of tools to semi-automatically parse C or Ada 
code, form condition tables, and formulate rules to resolve the don't cares (more generally, 
any flexibility) in the test set (embodied by the formal specification) to exercise special 
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values. The toolset is currently being used to develop reusable fault-tolerant components 
in Ada. For example, software to administer distributed recovery blocks [11, 20] has been 

validated using the ECT toolset. 
While these and other methodologies show promise, they have additional limitations when 

trying to cope with programming projects for expert systems or for decision support systems. 
In the next section we discuss the nature of decision support systems and the appropriateness 
of adopting a multiple version software (MVS) [4] approach. In Section III, we describe the 
CDE software development process and give a preliminary discussion of the issues involved. 
A testbed is under development at Texas A&M University. Section IV covers some initial 
concerns about the CDE methodology that the testbed will address. We summarize these 
concerns in Section V. 

II. SOFTWARE WITH DIVERSE INTERPRETATIONS 

This work pertains to a development process to arrive at reliable software for critical 
knowledge based systems. These software systems have inherent problems due to inconsis- 
tencies that may exist in their design or in the knowledge base. Since it is unduly complex 
to attempt to resolve these inconsistencies before proceeding with the software development, 
we have devised an approach that allows for the software development to proceed despite 
inconsistencies. The process of testing the resultant software then aids in the identification 

''' and resolution of specification or knowledge ba.se inconsistencies. 
Expert systems are appropriate for aerospace applications involving so-called 'soft' prob- 

••'■ lems under time constraints such that there can be no significant review by human experts. 
These soft problems can include those with demanding real-time constraints, such as threat 
assessment, selection of countermeasures during an engagement, and radar track estimation 

! and prediction. Also, when real-time constraints are not demanding, then decision support 
systems may still be appropriate if there is a significant volume of information to be pro- 

£g cessed.  For example, even with no strict real-time constraints, there may not be sufficient 
If time for human experts to draw detailed conclusions about a significant number of what-if 

scenarios. 
if Methodologies and analytical procedures that enable one to rely on a software product 
^ are of interest due to the cost-intensive and life-critical nature of aerospace systems; but no 

adequate methodologies and procedures have been developed. In particular, verification and 
:. validation techniques for expert systems remain more art than science. While the inference 

engine (reasoning methods) of a software product can be partially validated, there is no 
effective methodology to establish the integrity of the knowledge base or to validate the 

ü; connections between the knowledge base and the inference engine. 
Methods to overcome these difficulties have been proposed [18, 22], but have not been 

j*; demonstrated effective. The results of the research efforts for NRC and EPRI, as assessed in 
_ the SAIC report [16], are not conclusive at all. Therefore, we believe that implementation of 

multiple expert systems and subsequent voting or reasoning is the best available technique to 
achieve high confidence in the dependability of the software product for these applications. 
MVS is applicable to expert systems, unlike most formal methods, and has achieved notable 
results [9]. MVS is sufficiently accepted that the FA A reduces the testing requirements of 
individual versions when they are developed as a MVS system. 
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A prototypical architecture for systems with multiple instantiations of software modules 
is shown in Figure 3. There is a broadcast mechanism to ensure that each instantiation of 
each module functions on the same inputs and a decider mechanism to determine the proper 
module outputs. The problem of reaching a consensus on input values (such as sensor 
readings) is well studied [12, 14, 24] and will not be considered here. Architectures such as 
FTMP [8], SIFT [26], and MAFT are meant to treat hardware and communication errors— 
they generally presuppose that any multiple instantiations of an invocation of a module are 
actually replicates of a single software implementation of that module. We will consider 
software architectures where multiple versions of each module are written [4], 

Input 

I Version 3 | 

Oulput 

Figure 3: Multiple version architecture 

When multiple versions of a module are written, the diversity of the versions is the 
principal goal. Research investigations have concentrated on achieving program diversity by 
diversifying various elements of the software development process. For example, experiments 
have used different processors, different programming languages, and different data structures 
(e.g., fixed point in some versions and floating point in others). 

These design diversity experiments revealed that for well implemented multiple version 
software (iMVS) systems, the bulk of faults not tolerated by the system can be attributed to 
those portions of the software development, such as creating the formal specification, that 
were not multiply implemented. Diversifying the specifications is meant to accommodate 
these problems. So one aspect of diversity sought is at the specification level [2, 10]. This 
can include using diverse specification languages in the hope that different types of errors in 
translating natural language specifications to formal specifications or in translating formal 
specifications to code will not be correlated among the versions. 

At this point, consider that there are two ways to view MVS systems. One view is with 
the objective of creating an operational system with the multiple instantiations mapped onto 
one or more processors. The other view is to consider each diverse phase of the software 
development effort as an opportunity to identify errors introduced in that phase or extant 
from previous phases. For example, in going from formal specifications to code, comparison 
of the test results for the different versions can identify coding errors and can also lead 
to the discovery of errors o\ inconsistencies in the specification [3]. Similarly, if the formal 
specifications are diverse, then comparison of the versions could detect errors made in arriving 
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at the formal specifications and could also lead to the discovery of unclear or inconsistent 

natural language specifications. 
If one imagines a continuum from requirements to code, the MVS philosophy encourages 

pushing diversity so it is as close to the requirements as possible. There is a limitation on this 
diversity due to the necessity in Figure 3 of denning a means to compare the outputs of the 
diverse implementations. Our proposed software architecture achieves comparison of outputs 
by having the implementations provide facilities to submit proposed actions (outputs) to 
each other and evaluate the proposed actions of others. Figure 4 shows the path of the CDE 
methodology from the natural language specification to an operational system. 

Natural Language Specification 

7 
Formal Language Specification module identification 

test code code 

knowledge base 

iteration 

i regression test 

S2i 

Ü 

m 

Figure 4: Cooperating diverse experts 

CDE does not address the testing problem. It is assumed that an initial test set is obtained 
from some formal language specification. Initially, the problem is broken down into fairly 
large modules and each module may be implemented by multiple independent programming 
teams. The bulk of the (potentially inconsistent) knowledge base does not come into play 
until multiple interpretations are being coded. 

Back-to-back testing is conducted on the multiple interpretations and, for each failure of 
an acceptance test noted, a determination is made placing the discrepancy into one ol four 

categories: 

1. The test result expected was not valid. The formal specification requires modification. 

2. There is a coding error in one of the interpretations—rectify. 

3. There is an inconsistency in the knowledge base with a clear resolution. Correct the 

knowledge base. 

4. There is an inconsistency in the knowledge base without a clear resolution. Make the 
formal specification more detailed to generate the additional tests needed to assess the 
circumstances; adjust code as appropriate. 

In addition, the back-to-back testing results can be used to accumulate a set of regression 
tests. Some of the discrepancies (especially case 4 above) are indicative of tests that one 
should ensure are retained when the specifications are modified during software maintenance. 

By relaxing the voting Restriction, an additional layer of diversity is possible. The multiple 
implementations may now be functionally diverse. This action-event model is very flexible 

66 



(>. 

m 

in that interpretations may take entirely different approaches to solving the problem. It 
also, regrettably, puts considerable demands on the interpretations, for they must be able 
to accept events (outputs from other modules) and to assess actions proposed by other 
interpretations. These actions may take on fairly arbitrary forms. Also, it is no longer 
necessary for the software requirements (or natural language specification) to be complete, 

correct, and consistent at the outset. 
As a result, the benefits of the cooperating diverse experts approach are most succinct for 

'soft' problems. When a particular problem is not well understood or has associated with 
it a large and presumably inconsistent human knowledge base, then it is hard to identify 
the inconsistencies and it is even harder to confidently take measures to resolve them. In 
CDE systems, since the constraints of the decider are somewhat pushed away, it is easier for 
the human knowledge inconsistencies to propagate to the code where they can be identified. 
The inconsistencies discovered can then be resolved at the same time that there is greater 
understanding of their effects, because code has already been written and is being tested. 
(Or some inconsistencies can be left in if it is believed that they reflect the natural differences 

in human expert opinion on the problem.) 

III. CDE,DEVELOPMENT PROCESS 

E5 

$BI 

An outline of the phases in a software development effort is shown in Figure 5. A descrip- 
tion of each phase and its relation to the CDE methodology follows: 

Natural Language Specification 

Solution Classification 

Global Message Specification 

Major Module Identification 

Module Interaction Specification 

Local Message Specification 

Module Implementation 

(individual actions, incremental planning} 

<= 10.000 lines 

for each module 

human expert input 

Figure 5: Specification hierarchy 

Natural Language Specification. This is the (English) language formulation of the problem 
and the system requirements. It might not be necessary (and perhaps not appropriate) for 

this to be a detailed specification. 
Solution Classification. An obvious dichotomy occurs when one considers whether the 

problem is naturally solved by means of specifying a plan and then continually improving 
the plan (or adapting it to changing inputs).  We refer to this classification as incremental 
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planning. The alternative is to slice time into small intervals and to consider changing 
any (or all) possible outputs for each time interval (or continuously) without long-range 
planning. Since we refer to all module outputs as actions, we refer to this classification as 
individual actions. This is the classification generally assumed for hard real-time systems. 
Other classifications may also be appropriate. 

These classifications are mentioned because they have an effect on the global message 
specification required to provide appropriate facilities to the cooperating diverse experts. 
For complex software projects, different classifications may seem appropriate for the various 
modules identified. The sole purpose of solution classification is to determine the aggregate 
facilities that must be met by the global message specification. 

Global Message Specification. The purpose of this stage is to specify the tools necessary 
to implement the cooperating independently written versions of each module. The solution 
classification dictates to some extent the variety of process control and recovery facilities 
that will be needed. The development process is still largely dominated by data structure 
considerations. The physical objects (nouns) that the problem models and their possible 
qualities (adjectives) may be fully characterized at this level. 

Major Module Identification. Assuming that the problem is complicated, it is necessary to 
divide it into, modules;.preferably, with little anticipated interaction between modules. Each 
module will be implemented by more than one programming team with minimal interaction 
between teams allowed. Since the specifications are necessarily vague and the problem is 
hard, the programming teams can be expected to arrive at different solutions. We call these 
solutions interpretations. This is the first point in the development process where verbs 
(e.g., methods) come clearly into play. It is perhaps disadvantageous to break down the 
problem into modules whose complexity is much less than an estimated 10,000 lines of code 
in a procedural language. Every stage of dissecting the problem leaves less to be coded by 
multiple interpretations (and more that is globally specified—single point of failure). 

Module Interaction Specification. It is important that, at this point in the development, as 
much flexibility as possible remains available to the development teams that will implement 
the diverse interpretations. This maximizes the benefits to be gleaned from diversity. For 
example, Figure 6 shows an edge-weighted graph. Suppose that part or all of the module's 
purpose is to compute a minimal-cost path from the position, P, to a destination, D. The 
minimal-cost path for this trivial example is shown in bold. The cost of each edge traversal 
may reflect time or some other undesirable 'cost,' such as hazard (for an escape problem). 

Figure 6: Finding a minimal-cost path 
9 

The software project benefits with respect to diversity if the programming teams are not 
restricted in the algorithms they choose.  One team may choose a best-bud first (breadth- 
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first search) approach; another team may opt for a branch-and-bound (depth-first search) 
approach; and another team may solve the problem by computing the transitive closure of 
the adjacency matrix of the graph. 

Local Message Specification. Most of the human knowledge base concerning the problem 
is considered here and during module implementation. At this level, any additional facilities 
needed by the independent software versions are specified. These facilities can provide for 
the exxhange of intermediate results (conclusions). 

Module Implementation. The several interpretations of each module are all run on the 
computing resources available. The various interpretations of the various modules may be 
mapped to 100 processors or to 1. Some design decisions may be affected by this, but the 
effects on the technical correctness of the CDE methodology are presumed small and will be 
ignored in this discussion. As long as facilities are provided for preemptive interrupts and the 
detection of protection faults, catastrophic results will not ensue due to shared processors. 
An interpretation may even implement a section of its 'code' as multiple interpretations— 
spawning the appropriate processes as needed. 

Figure 7 shows one choice for the allowed interactions between the interpretations of 
a module. Each interpretation, during the course of its computations, arrives at. actions 
that it believes to be advantageous. Here, action may mean a-scalar action (individual 
actions) or a change to the current plan (incremental planning). Since software errors may 
occur, the interpretation submits its proposed action to the arbitrator, which chooses another 
interpretation to examine the proposed action. If the latter interpretation approves the 
action, then the arbitrator is informed. 
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Arbitrator 

action 

goal 

r 
Figure 7: Interaction of diverse experts 

The arbitrator is a comparatively simple piece of code that may be implemented with 
confidence. Furthermore, the implementation of the arbitrator is essentially independent of 
the local message specification—that is to say, it consists largely of reusable code. If the 
number (see below) of the approved action matches the number expected and if the action 
descriptions sent to the arbitrator from the two agreeing interpretations match, then the 
arbitrator declares the action taken and duly notifies all the interpretations as well as any 
appropriate external processes. Numbering actions is appropriate, because another approved 
action or external event may have taken place in the intervening time and the approved action 
is not assured to be appropriate under these circumstances. 

The static selection of acceptance testers depicted by the loop graph in Figure 7 is suitable 
for tolerating one software 'error' at a given instance. For static testing graphs, determining 
the degree of error tolerance is a generalization of the thoroughly studied system-level diag- 

69 



nosis problem [13, 19, 23]. The arbitrator may also implement various flexible procedures to 
choose acceptance testers. For example, an idling process may be preferred as an acceptance 
tester Also, the multiple interpretations need not be run simultaneously. The arbitrator 
may adopt an algorithm to spawn interpretations as needed.   See [17] for a discussion of 

these issues. 
Since the interpretations are purposefully diverse, it is natural to be concerned that 

submitted and approved actions might be unduly rare. To remedy this, a facility is provided 
for the interpretations to advise each other of their objectives or internally generated goals. 
Figure 7 depicts the allowed goal transmittals as being the reverse of the allowed action 
submittals. While this is natural, other possibilities are not to be dismissed. 

IV. TESTBED 

A testbed is currently being developed to resolve issues concerning the ODE methodology. 
It uses a single simple programming problem, which is discussed in detail in [15]. 

Analysis of Operating Characteristics 

Developing an application programmer's toolkit and a reliable parameterizable arbitrator 
involves addressing several issues. Four of the problem scenarios that must be overcome are 

discussed in the following. 
Rapid Interpretation. Suppose that an interpretation, I3 in Figure 7, is coded such that 

it submits actions much more frequently than the other interpretations—perhaps it does not 
think very deeply. This induces a performance drain on its acceptance tester, /2. For an 
incremental planning problem, the rapid interpretation might dominate the actions taken 
with its continual minor improvements. The other interpretations could be shut out, because 
with each action taken they must incorporate the changed plan before proposing any action. 
The effect is to reduce the module's effectiveness to that of the rapid interpretation, which 
(under the assumption that its speed comes from a lack of sophistication) may result in the 
module inadequately responding to changes in the physical environment. 

«* Smooth Decision Boundary.  Suppose that an event is becoming more certain (e.g., the 
| approach of an obstacle), for which, an action (EVADE) would be appropriate. The inter- 

pretations, in some order, arrive at the conclusion that the same action is advantageous. 
& Suppose that order in Figure 7 is 73, /2, and then lx. The following scenario would ensue: 1) 
L: /3 submits the action to 72) but it is rejected; 2) I2 submits the action to /,, but it is rejected; 

3) Ix submits the action to I3 and it is approved. The action is not approved until all three 
§ interpretations in our example realize its appropriateness. Half the possible orderings result 
IB in waiting until the third such realization of the action and half the possible orderings result 

in waiting only until the second such realization. This problem can be solved by having 
each interpretation maintain a history of recent, actions submitted to it, but that entails a 
performance penalty. Additionally, a software error, say in Iu could cause the action to be 
delayed until I3 deems it appropriate to resubmit it. Maintaining a history of recent actions 

submitted also handles the case where there is a software error. 
State Corruption. A software error may lead to corruption of the state of an interpreta- 

tion; e.g., an interpretation's representation of the current plan. Then the module's function 
becomes vulnerable to an additional software error until the corrupting error is detected and 
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recovery is completed. As discussed earlier, the arbitrator can logically decide to inject a 
(recovery) exception into the execution of an interpretation. During recovery the system 
remains vulnerable to an additional software error. If that period of vulnerability is poten- 
tially too broad to meet the system reliability requirements, then the interaction between 
interpretations in Figure 7 could be extended to include all approval pairs or it could be 
extended to a cycle on four interpretations—as well as more elaborate options. 

Hint or Beg. The interpretations have the privilege of transmitting their internally com- 
puted goals to each other. This can help offset the problem of infrequent approvals when 
the interpretations are rather diverse. Suppose, as in Figure 7, that the interpretations are 
constrained to send goals only to those interpretations that they conduct acceptance tests 
for. The two natural protocols are when (beg) the arbitrator, perceiving an inadequate ac- 
ceptance ratio, signals a testee to describe to one; of its testers the type of advice it could use 
and when (hint) the arbitrator, perceiving an inadequate acceptance ratio, signals a tester 
to provide advice to one of its testees. Hint appears more sensible since, on conducting an 
acceptance test, the tester could identify a goal (or goals) that is markedly unmet; whereas, 
it is harder to conceive of the testee formulating a request for the type of advice it needs. It 
is conceivable, however, that-the testing interpretation may be implemented in such a way 
that it is difficult to determine a critical goal. In that event, it might be better to leave this 

matter in the testee's demesne. 

V. CONCLUSIONS 

Multiple version software is used to achieve highly reliable software for critical systems, 
such as for the Airbus slats and flaps. Classical multiple version software models are con- 
strained by the requirement to implement voting, or a similar mechanism, on the software 
outputs. This constraint limits the degree of diversity allowed the independent programming 
teams, because their algorithms must reconvcrge to points of comparison. This thwarts at- 
tempts to limit the extent of the unreplicated design/specification phase of the software 
development process, which constitutes a single point of failure, and constrains (limits di- 

versity of) the independent algorithms. 
The proposed methodology uses a test-and-accept mechanism to bypass voting. An effect 

of the mechanism is to relax the necessity that the requirements and high-level specification 
be validated for consistency (readability). Also, conflicts in the human knowledge base 
that the programming teams access do not need to be resolved before multiple version de- 
velopment begins. For programming projects where human understanding of the problem is 
imperfect, differences in the opinions of human experts can be resolved during the test-and- 
accept process. This may have advantages versus requiring (possibly incorrect) decisions to 

make the human knowledge base consistent in advance. 
The methodology relies on back-to-back testing of multiple versions of each module dur- 

ing the iterative development phase. The operational implementation relies on mapping two 
or more interpretations of each module, plus an arbitrator to a multiprocessor or distributed 
processing architecture. Handling of hardware failures is not directly considered; it is as- 
sumed that a separate methodology, such as SIFT, is used to protect against hardware and 

communication failures. 
The arbitrator for each module is the key element in the software architecture. The arbi- 
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'• -    • trator is a potential single point of failure. Fortunately, the implementation of the arbitrator 
consists almost entirely of reusable code—it is essentially independent of the local message 

I specification (which describes the format of information exchanged between interpretations). 
The interpretations follow an action-event model. Each interpretation, during the course 

. . of its computations, arrives at actions that it believes to be advantageous.   Here, action 
;•' may mean a scalar action (individual actions) or a change to the current plan (incremental 

planning).   Proposed actions are submitted to the arbitrator, which chooses one or more 
5-;: other interpretations to examine the proposed action.   Based on the acceptance testing of 
i\, proposed actions, the arbitrator decides which actions are approved and suitably notifies the 

interpretations so that they may maintain consistent states. The approved actions released 
Q by the arbitrator are events perceived by other modules and/or they are system outputs. 
?ß The tunable parameters of the arbitrator include the bases for:  1) selecting acceptance 

testers (also possibly the spawning of interpretations); 2) approval/disapproval of proposed 
'■;.; actions; and 3) determining whether to inject an exception into an interpretation to invoke 
' - a recovery procedure (acceptance testing results indicating that the interpretation has a 

corrupted state or other major problem). 
i~-l Plausible uses of CDE include: 1) operational software that tolerates coding/specification 

errors for knowledge based systems; 2) operational software that tolerates knowledge base 
inconsistencies in expert systems; 3) test software to discern inconsistencies in knowledge 
bases; and 4) test software to identify coding/specification errors lor knowledge based systems 
(like back-to-back testing). 
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